Stanford Homes

TRANSPORTATION
 IMPACT STUDY

Proposed Mixed-Use Developmer 1437-1455 Queen Street West, City of Toronto

LEA Consulting Ltd.

April 24, 2023
Reference Number: 23322

Michael Pirocchi, MCIP RPP
Stanford Homes
2700 Dufferin Street, Unit 50
Toronto, Ontario
M6B 4J3

Dear Michael Pirocchi,

RE: Transportation Impact Study Proposed Mixed-Use Development 1437-1455 Queen Street West, City of Toronto

LEA Consulting Ltd. (LEA) is pleased to present our findings for our Transportation Impact Study (TIS) for the proposed mixed-use development at 1437-1455 Queen Street West in the City of Toronto. This TIS has been prepared for Stanford Homes in support of the Zoning By-Law Amendment (ZBA) and Site Plan Control (SPA) applications for the development proposal. This report concludes that the traffic associated with the proposed development has a minimal impact on the road network in the surrounding area and no new constraints identified with added site traffic.

Please do not hesitate to contact the undersigned should you have any additional questions or concerns at (905) 470-0015.

Yours truly,
LEA CONSULTING LTD.

Matthew Doren, Msc. Pl.
Transportation Planner

Encl. Transportation Impact Study - 1437-1455 Queen Street West, Proposed Mixed-Use Development, City of Toronto (April 2023)

Disclaimer

This Report represents the work of LEA Consulting Ltd ("LEA"). This Report may not be relied upon for detailed implementation or any other purpose not specifically identified within this Report. This Document is confidential and prepared solely for the use of Stanford Homes. Neither LEA, its sub-consultants nor their respective employees assume any liability for any reason, including, but not limited to, negligence, to any party other than Stanford Homes for any information or representation herein.

TABLE OF CONTENTS

1 Introduction 1
1.1 Proposed Development 2
2 Existing Transportation Conditions 3
2.1 Existing Road Network. 3
2.2 Transit Network 4
2.3 Cycling Network 6
2.4 Pedestrian Network 6
2.5 Traffic Data Collection 8
2.6 Existing Conditions Synchro Model Inputs 8
2.6.1 Queue Survey - Queen Street West \& Jameson Avenue 9
2.7 Existing Traffic Volumes 9
3 Future Background Traffic Conditions 10
3.1 Corridor Growth 10
3.2 Background Developments 10
3.3 Future Background Syncrho Model Inputs 12
3.4 Future Background Traffic Volumes. 12
4 Site-Generated Traffic 13
4.1 Mode Split 13
4.2 Trip Generation 13
4.2.1 Residential Trip Generation 13
4.2.2 Retail Trip Generation - New Retail Use and Existing Retail Uses to Remove 14
4.2.3 Multi-Modal Trip Generation 15
4.3 Trip Distribution and Assignment 15
5 Future Total Transportation Conditions 17
5.1 Future Total Traffic Volumes. 17
6 Intersection Capacity Analysis 18
6.1 Signalized Intersections 18
6.2 Unsignalized Intersections 20
7 Multi-Modal Analysis 24
7.1 Existing Multi-Modal Level of Service 24
7.2 Future Background Multi-Modal Level of Service Assessment 25
7.3 Site Multi-Modal Level of Service Assessment 25
7.3.1 Transit Trips 25
7.3.2 Walking Trips 26
7.3.3 Cycling Trips 26
8 Parking Assessment 27
8.1 Zoning By-Law Requirements - Bicycle Parking. 27
8.2 Zoning By-Law Requirements - Vehicle Parking 27
8.3 Accessible Vehicle Parking Requirements 29
9 Loading Assessment 30
10 Transportation Demand Management 31
10.1 Low Emmissions Transportation 31
10.1.1 Single-Occupant vehicle Trips 31
10.1.2 Electric Vehicle Infrastructure 31
10.2 Cycling Infrastructure. 31
10.2.1 Bicycle Parking Rates 31
10.2.2 Long-Term Bicycle Parking Location 32
10.2.3 Short-Term Bicycle Parking Location 32
10.2.4 Electric Bicycle Infrastructure 32
10.2.5 Shower and Change Facilities 32
10.3 Pedestrian Infrastructure 32
11 Transportation Demand Management Plan 33
11.1.1 Cycling-based Strategies 33
11.1.2 Pedestrian-Based Recommended Strategies 34
11.1.3 Transit-Based Strategies 35
11.2 Impact of TDM Measures. 35
11.3 TDM Monitoring. 36
12 Conclusions and Recommendations 37
LIST OF TABLES
Table 1-1: Site Statistics 2
Table 2-1: Data Collection Summary 8
Table 3-1: Background Developments 10
Table 4-1: Modal Split 13
Table 4-2: Subject Site Trip Generation (New Residential Trips) 14
Table 4-3: Subject Site Multi-Modal Trip Generation (New Residential) 15
Table 4-4: Proposed Auto Trip Distribution (New Residential) 15
Table 6-1: Queen Street West and Lansdowne Avenue Intersection Capacity Analysis 18
Table 6-2: Queen Street West and Lansdowne Avenue Queues 19
Table 6-3: Queen Street West and Jameson Avenue Intersection Capacity Analysis 19
Table 6-4: Queen Street West and Jameson Avenue Queues 19
Table 6-5: Queen Street West and Sorauren Avenue Intersection Capacity Analysis. 20
Table 6-6: Queen Street West and Sorauren Avenue Queues 20
Table 6-7: Queen Street West and Existing Site Access/MacDonell Avenue Intersection Capacity Analysis 21
Table 6-8: Queen Street West and Existing Site Access/MacDonell Avenue Queues 21
Table 6-9: Queen Street West and Proposed Site Access Intersection Capacity Analysis 22
Table 6-10: Queen Street West and Proposed Site Access Queues 22
Table 7-1: Surface Transit Level of Service Evaluation 24
Table 7-2: Pedestrian and Bicycling Level of Service Evaluation 24
Table 7-3: Breakdown of Expected Routes for Local Transit Trips 25
Table 8-1: Zoning By-Law Bicycle Parking Requirements 27
Table 8-2: Zoning By-law 89-2022 Vehicular Parking Standards - Parking Zone B 29
Table 8-3: Accessible Parking Requirements 29
Table 9-1: Zoning By-Law Loading Requirements 30
Table 10-1: Zoning By-Law 569-2013 Electric Vehicle Parking Standards 31
Table 11-1: Summary of TDM Strategies and Estimated Impacts 36
LIST OF FIGURES
Figure 1-1: Subject Site Location. 1
Figure 1-2: Proposed Site Plan 2
Figure 2-1: Existing Lane Configuration 3
Figure 2-2: Existing Transit Network 5
Figure 2-3: Existing Cycling Network 6
Figure 2-4: 15-Minute Walking Distance from Subject Site. 7
Figure 2-5: Existing Traffic Volumes 9
Figure 3-1: Corridor Growth 10
Figure 3-2: Background Development Locations. 11
Figure 3-3: Background Development Traffic Volumes 11
Figure 3-4: Future Background Traffic Volumes 12
Figure 4-1: Proxy Site Location 14
Figure 4-2: New Residential Site Trips 16
Figure 4-3: Existing Retail Trips to Remove 16
Figure 4-4: Net Site Auto Trips 16
Figure 5-1: Future Road Network 17
Figure 5-2: Future Total Traffic Volumes 17
Figure 8-1: Proposed Parking Zones 28

APPENDICES

APPENDIX A
APPENDIX B
APPENDIX C APPENDIX D APPENDIX E APPENDIX F APPENDIX G APPENDIX H APPENDIXI APPENDIX J APPENDIX K APPENDIX L

TERMS OF REFERENCE
TRAFFIC DATA AND SIGNAL TIMING PLANS
QUEUE SURVEY
CORRIDOR GROWTH CALCULATIONS
BACKGROUND DEVELOPMENTS
DETAILED TTS CALCULATIONS
RESIDENTIAL TRIP GENERATION PROXY SURVEYS
EXISTING CONDITIONS INTERSECTION CAPACITY ANALYSIS
2028 FUTURE BACKGROUND INTERSECTION CAPACITY ANALYSIS
2028 FUTURE TOTAL INTERSECTION CAPACITY ANALYSIS
MMLOS GUIDELINES
FUNCTIONAL DESIGN REVIEW

1 INTRODUCTION

LEA Consulting Ltd. (LEA) was retained by Stanford Homes to undertake a Transportation Impact Study (TIS) for the proposed mixed-use development located at 1437-1455 Queen Street West in the City of Toronto (hereinafter referred to as the "subject site"). The following TIS has been prepared in support of the Zoning By-law Amendment (ZBA) and Site Plan Control (SPA) applications for the proposed development. The subject site is currently occupied by 1-2 storey commercial shops and surface parking lot and is located near the southwest corner of Queen Street West and Jameson Avenue. The subject site location is illustrated in Figure 1-1.

Figure 1-1: Subject Site Location

Source: Google Maps, accessed February 2023
The purpose of this assessment is to review the existing transportation infrastructure in the surrounding area, including the road network, transit network and active transportation network and assess the traffic impact of the proposed development on the network. In addition, the proposed parking and loading provisions will be reviewed, and Transportation Demand Management (TDM) measures will be recommended to encourage the use of other modes of transportation which aligns with the City of Toronto Official Plan objectives.

CANADA | INDIA | AFRICA | ASIA | MIDDLE EAST

1.1 PROPOSED DEVELOPMENT

The development proposal includes a 12-storey mixed-use building. A total of 249 units and approximately $789 \mathrm{~m}^{2}$ of ground floor retail GFA are proposed. A breakdown of the proposed land uses is outlined in Table 1-1.

Table 1-1: Site Statistics

Land Use	Unit/GFA
Residential	249 Units
Studio	9
1 Bedroom	130
2 Bedroom	84
3 Bedroom	26
Retail	$789 \mathrm{~m}^{2}$

Access to the development is proposed via an unsignalized, all-moves site access via a laneway onto Queen Street West. The proposed site plan is illustrated in Figure 1-2.

Figure 1-2: Proposed Site Plan

Source: RAW Design., April 2023

2 EXISTING TRANSPORTATION CONDITIONS

This section identifies the existing transportation conditions present in the study area, including the road, transit, cyclist and pedestrian networks. The study area was determined by assessing the size of the proposed development and its anticipated transportation impact. The terms of reference and correspondence with the City is included in Appendix A. The study area includes the following intersections:

- Lansdowne Avenue and Queen Street West (Signalized);
- MacDonell Avenue/Existing Site Access (Unsignalized);
- Jameson Avenue and Queen Street West (Signalized); and
- Sorauren Avenue and Queen Street West (Signalized).

2.1 EXISTING ROAD NETWORK

This section will describe the road network with the above-mentioned study area. The existing intersection controls and lane configuration are illustrated in Figure 2-1. All roadways within the study area are under the jurisdiction of the City of Toronto.

Figure 2-1: Existing Lane Configuration

Queen Street is an east-west major arterial roadway with a four-lane cross-section (two (2) lanes per direction) in the vicinity of the subject site. Under the City of Toronto's jurisdiction, the roadway extends from the intersection with King Street/Roncesvalles Avenue (where the road becomes The Queensway) in the west and Fallingbrook Road in the east. The roadway operates with a posted speed limit of $40 \mathrm{~km} / \mathrm{h}$ within the study area.

Jameson Avenue is a north-south minor arterial roadway with a two-lane cross-section (one lane per direction) within the study area. The roadway operates between Queen Street West in the north and Lakeshore Boulevard in the south. Jameson Avenue operates with a posted speed limit of $40 \mathrm{~km} / \mathrm{h}$ within the study area.

MacDonell Avenue is a north-south local roadway with a two-lane cross-section (one lane per direction) south of the intersection with Seaforth Avenue and a one-lane cross-section (one lane southbound direction) north of the intersection. The roadway operates between Queen Street West in the south and Wabash Avenue in the north. MacDonell Avenue operates with a speed limit of $30 \mathrm{~km} / \mathrm{h}$ within the study area.

Lansdowne Avenue is a north-south minor arterial roadway with a two-lane cross-section (one lane per direction) within the study area. The roadway operates between Queen Street West in the south and St. Clair Avenue West in the north. Lansdowne Avenue operates with a posted speed limit of $40 \mathrm{~km} / \mathrm{h}$ within the study area.

Sorauren Avenue is a north-south collector roadway with a two-lane cross-section (one lane per direction) within the study area. The roadway operates between Queen Street West in the south and Dundas Street West in the north. Sorauren Avenue operates with a posted speed limit of $30 \mathrm{~km} / \mathrm{h}$ within the study area.

2.2 TRANSIT NETWORK

The subject site is located in an area well-serviced by the Toronto Transit Commission (TTC) transit network. The subject site is within walkable distance of bus stops along Queen Street West. Transit routes servicing the area are illustrated in Figure 2-2.

As a testament to the subject site's transit accessibility, the site receives a Transit Score of 82/100, indicating an excellent transit score when entered into the WalkScore application, indicating that public transit is a convenient mode of travel for most trips.

Figure 2-2: Existing Transit Network

Source: Toronto Transit Commission, January 2023
TTC Bus Route 47 - Lansdowne is a bus route that generally operates in a north-south direction between the area of Lansdowne Avenue and Queen Street West in the south and the area of Lansdowne Avenue and St. Clair Avenue West in the north. The route also provides service to Yorkdale TTC Stations on Line 1, YongeUniversity. Accessible service is provided on the route. Three services are operated along the route and include the 47A short-turn and 47B branches which operates every day, all day. The route also includes the 47C branch which operates during weekday peak periods only. The route is part of the 10-Minute Network and as such operates with service headways of 10 minutes or better throughout the day.

Access Location: Route 47 is accessible at the intersection of Queen Street West and Lansdowne Avenue, which is located 110 m from the subject site (equivalent to a two-minute walk) from the subject site.

TTC Streetcar Route 501 - Queen is a streetcar route that generally operates in an east-west direction between the Long Branch Loop in the west and the Neville Park Loop in the east. During the day and early evening times, all seven (7) days a week, the route operates two (2) services, the Humber-Neville Park and Long Branch-Humber routes. During the late evenings, the singular Long Branch-Neville Park route is operated. The route also provides service to Osgoode and Queen TTC Stations on Line 1 Yonge-University. The route is part of the 10 -Minute Network and as such operates with service headways of 10 minutes or better throughout the day.

Access Location: Route 501 is accessible near the intersection of Queen Street West and Jameson Avenue, which is located adjacent to the subject site.

2.3 CYCLING NETWORK

The subject site is located in a neighbourhood with access to some nearby existing cycling infrastructure. Onstreet shared cycling connections are located just to the west of the subject site along Queen Street West for east-west travel and connect to further on-street cycling connections along Sorauren Avenue.

As a testament to how bikeable the subject site is, the site receives a Bike Score of $85 / 100$, or "Very Bikeable", when entered into the WalkScore application. This indicates that cycling is convenient for most trips. The cycling network is illustrated in Figure 2-3.

Figure 2-3: Existing Cycling Network

Source: City of Toronto, 2023

2.4 PEDESTRIAN NETWORK

In the area immediately surrounding the subject site, the existing pedestrian network and environment is excellent. Continuous sidewalks are available on both sides of all streets in the study area. Furthermore, pedestrian crosswalks are available on most approaches with protected pedestrian phases at the signalized intersection nearby. The existing pedestrian network provides excellent connections between the residential and commercial uses in the area as well as nearby TTC transit stops.

As a testament to the subject site's walkability, the site receives a Walk Score of 91/100, or "Walker's Paradise", when entered into the WalkScore application. This indicates that the day's errands are able to be accomplished without a vehicle. As shown in Figure 2-4 below, a 15 -minute walk from the subject site could permit an individual to reach Roncesvalles Avenue, Dufferin Street West, Dundas Street and King Street West along with many other amenities along Queen Street West.

Figure 2-4: 15-Minute Walking Distance from Subject Site

Source: walkscore.com, 2023

2.5 TRAFFIC DATA COLLECTION

Turning movement counts (TMCs) were used as the source of traffic data in the intersection capacity analysis. A summary of the TMC data collected is outlined in Table 2-1 with details of the TMC data collected found within Appendix B. Counts were conducted by LEA for all study area intersections on February 7, 2023. The traffic data collected is considered to be an appropriate representation of current traffic patterns and an appropriate baseline to forecast future traffic patterns as COVID-19 restrictions have been removed and modified work commuting habits are expected to remain permanent. because of various workplaces implementing a hybrid in-person/work from home structure. The collected traffic data provides an appropriate representation of current traffic patterns as well as possible future traffic patterns caused by the pandemic. As such, no COVID-19 related adjustments to traffic patterns were applied.

Table 2-1: Data Collection Summary

Intersection	TMC Date	Source
Lansdowne Avenue \& Queen Street West		
Jameson Avenue \& Queen Street West	February 7, 2023	LEA Consulting Ltd.
Existing Site Access/MacDonell Avenue \& Queen Street West		
Sorauren Avenue \& Queen Street West		

2.6 EXISTING CONDITIONS SYNCHRO MODEL INPUTS

Existing traffic operations were assessed to provide a baseline for future traffic operations. The existing analysis incorporates the most recent signal timing plans for the study intersections and were obtained from the City of Toronto. Furthermore, peak hour factors (PHF) were obtained from the TMCs collected.

Existing model calibration was conducted based on existing conditions for the northbound right (NBR) movement at the Queen Street West and Jameson Avenue intersection during the PM peak hour. For this movement with the default model parameters, a Volume-to-Capacity (V/C) ratio greater than 1.00 was indicated. As this is not theoretically possible, the movement under the PM peak hour incorporated the following parameters:

- Lost Time Adjustment (LTA): LTA for the movement was decreased to -2 with assumption that more vehicles will use the amber and all-red time to complete the movement under congested conditions.
- Ideal Saturated Flow Rate: Ideal Saturated Flow rate was increased to 2100 vphpl, while maintaining the City of Toronto's Guidelines for Using Synchro 11 (Including SimTraffic 11) (2021) recommended saturated flow rate (protected) below threshold of 2005 vphpl for through lane groups.

The V/C ratio that resulted from the two adjustments described above for the NBR at Queen St W and Jameson Ave was checked against an estimation of capacity for this movement based on a review of video footage from the time of data collection. Details can be found in Appendix B.

Existing model calibration was also conducted based on the streetcar operations in mixed traffic conditions along Queen Street West. As such, the existing analysis incorporated the following parameters:

- Lane Utilization Factor (LUF): LUF adjusted for eastbound and westbound lane groups along Queen Street West during both weekday peak hours to reflect mixing of streetcar and general traffic within the centre-lane. The base LUF was 0.95 for both directions in both peak hours. LUF adjustment was calculated based on review of survey video footage for the peak 15 minutes for both peak hours, with detailed calculations provided in Appendix B. The LUF was adjusted to 0.88 and 0.94 in the AM and PM peak hours, respectively for the eastbound direction. The LUF was adjusted to 0.93 and 0.99 in the AM and PM peak hours respectively for the westbound direction.

2.6.1 Queue Survey - Queen Street West \& Jameson Avenue

A queue survey was conducted for eastbound movements at the intersection of Queen Street West \& Jameson Avenue to assess queuing constraints on Queen Street West, west of the intersection travelling in the eastbound direction. The purpose of conducting this survey was to assist in assessing the limits to the synchro modelling in capturing queuing conditions during the traffic survey. The results of this survey are discussed in Section 6 and details on the queue survey results are included in Appendix C.

2.7 EXISTING TRAFFIC VOLUMES

The existing traffic volumes in the study area during the weekday AM and PM peak hours are illustrated in Figure 2-5. No corridor traffic volume balancing was conducted for the existing traffic volumes.

Figure 2-5: Existing Traffic Volumes

3 FUTURE BACKGROUND TRAFFIC CONDITIONS

For the analysis of future background traffic conditions, this study considers a five-year horizon to the year 2028. The following sections discuss the anticipated and planned changes to the transportation network as well as the background developments and corridor growth assumptions.

3.1 CORRIDOR GROWTH

Based on a review of TMC data for the intersections of Queen Street West and Lansdowne Avenue/Jameson Avenue from 2008, 2013 and 2019, and Queen Street West and Sorauren Avenue from 2015 and 2018, minimal or negative growth along Queen Street West was identified with the exception of the eastbound direction in the PM peak period, where some growth was indicated. As such a 3% compound annual growth rate for the eastbound PM peak hour was applied. Of note, the surrounding background development reports mostly assumed no growth for the study corridors, which aligns with the findings of historical counts historical counts. The corridor growth applied for the future scenarios is illustrated below in Figure 3-1 and corridor growth calculations are included in Appendix D.
Figure 3-1: Corridor Growth

3.2 BACKGROUND DEVELOPMENTS

Four (4) background developments located within or near the study area were considered under future background conditions. The site statistics of the background developments are summarized below in Table 3-1.

Table 3-1: Background Developments

$\#$	Location	Proposed Development	Source of Traffic Volumes
1	1521 Queen St W	95 residential units; $293 \mathrm{~m}^{2}$ non-residential GFA	TIS dated Nov 2019 Table 15 (1) BA Group
2	1375 Queen St W	50 residential units; $264 \mathrm{~m}^{2}$ non-residential / commercial GFA	TIS dated March 2020 (Figure H-3) BA Group
3	150 Dunn Ave	192 long-term care beds	TIS dated February 2019 (Figure 5-1 and 5-2) LEA
4	$8-14$ Brock Ave \& 1354-1360 Queen St W	172 residential units; $386 \mathrm{~m}^{2}$ retail GFA	TIS dated September 2020 (Figure 13) BA Group

(1) The latest submission with site trip generation was from November 2019. Table 15 of this submission indicated that no auto driver trip generation is forecasted for this development given the provision of zero parking.

Transportation lmpact Study Proposed Mixed-Use Development 1437-1455 Queen Street West, Toronto

The site-generated traffic volumes and their assignment on the study area road network for the background developments were extracted from their respective traffic reports prepared in support of their development applications. Relevant excerpts from the traffic studies for each background development are included in Appendix E. The location of each background development relative to the location of the subject site is illustrated below in Figure 3-2 and the background development traffic volumes considered in the analysis are illustrated below in Figure 3-3.

Figure 3-2: Background Development Locations

Source: Google Maps, 2023
Figure 3-3: Background Development Traffic Volumes

CANADA | INDIA | AFRICA | ASIA | MIDDLE EAST

3.3 FUTURE BACKGROUND SYNCRHO MODEL INPUTS

Input parameters from the existing conditions scenario, inclusive of existing modal calibrations, were maintained with corresponding future background volumes. No signal optimization was conducted for the future scenarios.

3.4 FUTURE BACKGROUND TRAFFIC VOLUMES

The future background traffic volumes for the weekday AM and PM peak hours under the 2028 future background scenario are illustrated in Figure 3-4.

Figure 3-4: Future Background Traffic Volumes

4 SITE-GENERATED TRAFFIC

The proposed development consists of a 12 -storey mixed-use building. A total of 249 units and approximately $789 \mathrm{~m}^{2}$ of ground floor retail GFA are proposed. The following section details the trip generation from the subject site.

4.1 MODE SPLIT

Data from the 2016 Transportation Tomorrow Survey (TTS) was extracted to identify the modal split of the neighborhood trips based on home-based work trips for filtered for apartments from the Traffic Analysis Zones (TAZs): 89, 109, 110, and 113. This modal split was used to identify the transit and pedestrian mode shares to determine the breakdown of transit and pedestrian trips from the trip generation. Upon determining the breakdown of transit and pedestrian trips based on the TTS modal split data, the modal split for the sitegenerated trips was ultimately based on the ratio of two-way peak hour trips for each mode to the total site trip generation (discussed further in the next section). The TTS modal split is identified in Table 4-1 below, with detailed TTS data is provided in Appendix F.

Table 4-1: Modal Split

Mode	$\%$
Auto Driver + Passenger	33%
Transit	45%
Walk	14%
Cycle	8%
2 Total	100%

4.2 TRIP GENERATION

4.2.1 Residential Trip Generation

Trip generation was estimated for the residential portion of the subject site through the utilization of proxy surveys at comparable developments. The proxy sites chosen are 15 Stafford Street and 25 Stafford Street. These proxy sites were chosen as they display comparable land use characteristics to the subject site and have a similar transportation context. Furthermore, the proxy sites are located within reasonable proximity to the subject site ($\sim 2.5 \mathrm{~km}$ from the subject site). The trip generation surveys were conducted at the proxy sites between 7:30 AM - 9:30 AM and 4:30 PM and 6:30 PM on Tuesday, February 7, 2023. Trip generation rates from these sites were determined based on the average of both proxy sites for auto driver/passenger trips, pedestrian trips, and cyclist trips, to determine the multimodal trip generation for the subject site.

LEA Consulting has also surveyed these proxy sites in 2015 for trip generation and as such compared the 2015 rates with the rates from the 2023 surveys, determining they were comparable and in some cases, more conservative than the 2015 rates. The 2015 surveys were carried out from Friday June $5^{\text {th }}$ to Friday June $12^{\text {th }}$ 2015. Thus, this determined the 2023 surveyed rates are appropriate to use for the analysis. Of note however, there were no cyclist trips from the 2023 surveys and as such, the cyclist trip generation rates from the 2015 surveys were used to determine cyclist trips generated from the subject site.

The location of the proxy sites relative to the subject site is shown in Figure 4-1 and detailed survey data is included in Appendix G.

Figure 4-1: Proxy Site Location

Source Google Maps, 2023

4.2.2 Retail Trip Generation - New Retail Use and Existing Retail Uses to Remove

Regarding the proposed retail component of the subject site, given the scale of retail use on-site, zero retail parking spaces provided on site, as well as local travel characteristics, it is assumed that the proposed retail use will attract local trips already in the area but is not expected to generate new vehicle trips solely for this use. As such, no new trip generation will be included for the retail use. For the existing retail uses, trip generation was based on the TMC data. Trips were removed at the existing site access but have not been removed from the remainder of the network. This methodology accounts for the fact that, while the existing retail use will not exist, these trips may still exist in the area in the form of previous pass-by trips to the existing retail use on the subject lands.

Table 4-2 below illustrates the trip generation for the new residential trips based on the average proxy site trip generation rates per mode.

Table 4-2: Subject Site Trip Generation (New Residential Trips)

New Residential Trips - 255 units	Weekday AM Peak Hour			Weekday PM Peak Hour		
	In	Out	Total	In	Out	Total
Auto (Driver + Passenger) Trips						
Trip Rate	0.02	0.10	0.11	0.09	0.03	0.13
Auto (Driver + Passenger) Trips	4	25	29	24	8	32
Transit + Walking Trips						
Trip Rate	0.09	0.17	0.26	0.17	0.10	0.28
Trips (Transit + Walking) ${ }^{(1)}$	22	43	65	44	27	71
Transit Trips	17	33	50	33	21	54
Walking Only Trips	5	10	15	11	6	17
Cycling Trips						
Trip Rate	0.00	0.03	0.03	0.01	0.00	0.01
Cycling Trips	0	7	7	2	1	3
Total New Person Trips	26	75	101	70	36	106

[^0]CANADA| INDIA | AFRICA| ASIA | MIDDLE EAST
Page | 14

As noted in the above table, based on the average trip rates from the proxy sites, the subject site is anticipated to generate 29 two-way auto driver and auto passenger trips during the AM peak hour (4 inbound and 25 outbound) ad 32 two-way auto driver and auto passenger trips during the PM peak hour (24 inbound and 8 outbound). Furthermore, for transit trips, the subject site is anticipated to generate 49 two-way trips in the AM peak hour (17 inbound and 33 outbound) and 54 two-way trips in the PM peak hour (33 inbound and 21 outbound). For walking trips, 16 two-way AM peak hour trips (5 inbound and 10 outbound) and 17 two-way PM peak hour trips (11 inbound and 6 outbound) are anticipated to be generated. For cycling trips, 7 two-way AM peak hour trips (7 outbound only) and 3 two-way PM peak hour trips (2 inbound and 1 outbound) are anticipated to be generated.

4.2.3 Multi-Modal Trip Generation

The multi-modal site trip generation is summarized in Table 4-3 below with the mode split for the subject site trips calculated.

Table 4-3: Subject Site Multi-Modal Trip Generation (New Residential)

Land Use	Description	Weekday AM Peak Hour				Weekday PM Peak Hour			
		Mode Split	In	Out	Total	Mode Split	In	Out	Total
New Residential	External Person Trips	-	26	75	101	-	70	36	106
	Auto Driver + Passenger Trips	29\%	4	25	29	30\%	24	8	32
	Transit Trips	49\%	17	33	49	51\%	33	21	54
	Walking trips	15\%	5	10	16	16\%	11	6	17
	Cycling Trips	7\%	0	7	7	3\%	2	1	3

4.3 TRIP DISTRIBUTION AND ASSIGNMENT

Trip distribution for the site traffic was derived using Transportation Tomorrow Survey (TTS) 2016 data for the TAZs 98, 109, 110, and 113. The distribution was based on the peak directional distribution. Trip assignment was based on local road network, turn restrictions, changes in the future network (assumed none for the analysis), logical routing, and the type of access. The trip distribution for the residential uses is outlined in Table 4-4. Detailed TTS data is provided in Appendix F.

Table 4-4: Proposed Auto Trip Distribution (New Residential)

Direction From/To	Expected Route	Weekday AM/PM Peak Hour	
		In	Out
North	Lansdowne Ave	7%	2%
South	Jameson Ave	36%	40%
East	Queen St W	39%	50%
West	Queen St W	18%	8%
TOTAL			

Of note, for the existing retail site traffic for removal, existing retail trips were removed at the existing site access but it was assumed that no net change at the remaining study area intersections as new retail trips may still be driving in and out of the area and parking nearby.

The new residential trips for the subject site are illustrated in Figure 4-2, the existing retail trips to remove are illustrated in Figure 4-3 and the net site auto trips are illustrated in Figure 4-4.

Figure 4-2: New Residential Site Trips

Figure 4-3: Existing Retail Trips to Remove

Figure 4-4: Net Site Auto Trips

5 FUTURE TOTAL TRANSPORTATION CONDITIONS

Future total traffic conditions include the addition of site trips to the 2028 future background volumes. Changes noted under future background conditions were maintained in the future total analysis. The future road network configuration is illustrated below in Figure 5-1.

Figure 5-1: Future Road Network

5.1 FUTURE TOTAL TRAFFIC VOLUMES

The future total traffic volumes for the weekday AM and PM peak hours are illustrated in Figure 5-2.
Figure 5-2: Future Total Traffic Volumes

6 INTERSECTION CAPACITY ANALYSIS

The intersection capacity analysis was undertaken using Synchro 11.0, which is based on the Highway Capacity Manual (2000) methodology and adheres to the City of Toronto Guidelines for the Preparation of Transportation Impact Studies (2013). As per the City of Toronto Guidelines, key movements of interest are those with Level-of-Service (LOS) E or worse or a Volume-to-Capacity (V/C) ratio greater than 0.85 for through and right movements and a V/C greater than 0.9 for dedicated left turn-movements.

The intersection capacity analysis was conducted for the weekday AM and PM peak hours. As was noted prior, the Peak Hour Factors (PHF) under existing conditions for all intersections were calculated based on surveyed traffic counts. As noted in Section 3.3, input parameters under existing conditions, inclusive of existing model calibrations, were maintained under future background/total conditions. No signal optimization was conducted for the future scenarios.

The following sections outline a comparison of the capacity analysis results under existing, future background and future total conditions. The analysis outlines the intersection capacity analysis for signalized and unsignalized intersections.

Detailed intersection capacity analysis is provided in the following appendices:

- Appendix H: Existing Intersection Capacity Analysis;
- Appendix I: 2028 Future Background Intersection Capacity Analysis; and
- Appendix J: 2028 Future Total Intersection Capacity Analysis.

6.1 SIGNALIZED INTERSECTIONS

The intersection capacity analysis results for the signalized intersections for the AM and PM peak hour are summarized in Table 6-1 to Table 6-6 below.

Table 6-1: Queen Street West and Lansdowne Avenue Intersection Capacity Analysis

AM PK HR	Existing				Future Background (2028)				Future Total (2028)			
Mvmt	Vol	V/C	Delay (s)	LOS	Vol	V/C	Delay (s)	LOS	Vol	V/C	Delay (s)	LOS
OVERALL	-	0.63	25	C	-	0.64	25	C	-	0.64	25	C
EBLT	558	0.57	6	A	568	0.58	6	A	581	0.59	6	A
WBTR	340	0.59	36	D	351	0.61	37	D	353	0.61	37	D
SBL	111	0.58	47	D	111	0.58	47	D	111	0.58	47	D
SBR	140	0.67	52	D	140	0.67	52	D	140	0.67	52	D
PM PK HR	Existing				Future Background (2028)				Future Total (2028)			
Mvmt	Vol	V/C	Delay (s)	LOS	Vol	V/C	Delay (s)	LOS	Vol	V/C	Delay (s)	LOS
OVERALL	-	0.65	27	C	-	0.67	26	C	-	0.68	26	C
EBLT	529	0.51	7	A	599	0.56	7	A	603	0.57	7	A
WBTR	447	0.66	38	D	458	0.68	38	D	467	0.69	39	D
SBL	87	0.43	41	D	87	0.43	41	D	87	0.43	41	D
SBR	159	0.71	54	D	159	0.71	54	D	161	0.72	55	D

Table 6-2: Queen Street West and Lansdowne Avenue Queues

AM PEAK	Available Storage (m) ${ }^{(1)}$	Existing Queue (m)		Future Background 2028 Queue (m)		Future Total 2028 Queue (m)	
Mvmt							
		50th	95th	50th	95th	50th	95th
EBLT	23	6	11	6	12	6	14
WBTR	40	31	48	33	50	33	50
SBL	221	22	42	22	42	22	42
SBR	45	28	57	28	57	28	57
PM PEAK	Available Storage (m) ${ }^{(1)}$	Existing		Future Background 2028		Future Total 2028	
Mvmt		Queue (m)		Queue (m)		Queue (m)	
		50th	95th	50th	95th	50th	95th
EBLT	23	6	9	6	9	6	9
WBTR	40	40	58	42	60	43	61
SBL	221	16	32	16	32	16	32
SBR	45	31	62	31	62	32	64

(1) For through or shared through/right movements without dedicated turn lanes, the distance to the closest intersection or main accesses upstream that could potentially be impacted by queues has been included under available storage.

Table 6-3: Queen Street West and Jameson Avenue Intersection Capacity Analysis

AM PK HR	Existing				Future Background (2028)				Future Total (2028)			
Mvmt	Vol	V/C	Delay (s)	LOS	Vol	V/C	Delay (s)	LOS	Vol	V/C	Delay (s)	LOS
OVERALL	-	0.65	27	C	-	0.66	27	C	-	0.68	28	C
EBTR	401	0.65	32	C	411	0.67	32	C	434	0.71	34	C
WBLT	395	0.44	4	A	406	0.45	5	A	408	0.46	5	A
NBL	55	0.26	36	D	55	0.26	36	D	56	0.27	36	D
NBR	181	0.81	62	E	181	0.81	62	E	181	0.81	62	E
PM PK HR	Existing				Future Background (2028)				Future Total (2028)			
Mvmt	Vol	V/C	Delay (s)	LOS	Vol	V/C	Delay (s)	LOS	Vol	V/C	Delay (s)	LOS
OVERALL	-	0.66	29	C	-	0.68	29	C	-	0.69	29	C
EBTR	303	0.45	27	C	373	0.55	29	C	380	0.56	29	C
WBLT	527	0.49	5	A	538	0.50	6	A	549	0.51	6	A
NBL	79	0.40	40	D	79	0.40	40	D	88	0.44	41	D
NBR	256	0.93	76	E	256	0.93	76	E	256	0.93	76	E

Table 6-4: Queen Street West and Jameson Avenue Queues

AM PEAK	Available Storage (m) ${ }^{(1)}$	Existing		Future Background 2028		Future Total 2028	
		Queue (m)		Queue (m)		Queue (m)	
		50th	95th	50th	95th	50th	95th
EBTR	28	36	52	37	53	41	58
WBLT	23	3	5	3	5	3	5
NBL	15	10	23	10	23	11	23
NBR	84	39	77	39	77	39	77
PM PEAK	Available Storage (m) ${ }^{(1)}$	Existing		Future Background 2028		Future Total 2028	
Mvmt		Queue (m)		Queue (m)		Queue (m)	
		50th	95th	50th	95th	50th	95th
EBTR	28	19	32	27	40	27	41
WBLT	23	4	6	4	7	4	8
NBL	15	15	31	15	31	17	34

Page | 19

NBR	84	56	106	56	106	56	106
(1) For through or shared through/right movements without dedicated turn lanes, the distance to the closest intersection or main							

Table 6-5: Queen Street West and Sorauren Avenue Intersection Capacity Analysis

AM PK HR	Existing				Future Background (2028)				Future Total (2028)			
Mvmt	Vol	V/C	Delay (s)	LOS	Vol	V/C	Delay (s)	LOS	Vol	V/C	Delay (s)	LOS
OVERALL	-	0.47	9	A	-	0.47	9	A	-	0.47	10	A
EBLT	607	0.50	7	A	617	0.51	7	A	618	0.51	7	A
WBTR	269	0.17	7	A	279	0.17	7	A	281	0.18	7	A
SBL	53	0.28	37	D	53	0.28	37	D	53	0.28	37	D
SBR	20	0.02	35	C	20	0.02	35	C	20	0.02	35	C
PM PK HR	Existing				Future Background (2028)				Future Total (2028)			
Mvmt	Vol	V/C	Delay (s)	LOS	Vol	V/C	Delay (s)	LOS	Vol	V/C	Delay (s)	LOS
OVERALL	-	0.37	9	A	-	0.41	9	A	-	0.41	9	A
EBLT	511	0.40	6	A	581	0.44	7	A	585	0.45	7	A
WBTR	478	0.26	7	A	488	0.27	8	A	489	0.27	8	A
SBL	46	0.23	37	D	46	0.23	37	D	46	0.23	37	D
SBR	26	0.02	35	C	26	0.02	35	C	26	0.02	35	C

Table 6-6: Queen Street West and Sorauren Avenue Queues

AM PEAK	Available Storage (m) ${ }^{(1)}$	Existing Queue (m)		Future B	und 2028	Futu	2028
Mvmt				Queue (m)		Queue (m)	
		50th	95th	50th	95th	50th	95th
EBLT	20	35	50	36	51	36	52
WBTR	135	9	18	12	19	12	19
SBL	119	10	22	10	22	10	22
SBR	35	0	7	0	7	0	7
PM PEAK	Available Storage (m) ${ }^{\text {(1) }}$	Existing		Future Background 2028		Future Total 2028	
Mvmt		Queue (m)		Queue (m)		Queue (m)	
		50th	95th	50th	95th	50th	95th
EBLT	20	23	33	28	40	28	40
WBTR	135	18	26	20	26	20	26
SBL	119	8	19	8	19	8	19
SBR	35	0	7	0	7	0	7

6.2 UNSIGNALIZED INTERSECTIONS

The intersection capacity analysis results for the unsignalized intersections for the AM and PM peak hour are summarized in Table 6-7 to Table 6-10 below.

CANADA| INDIA | AFRICA| ASIA | MIDDLE EAST
Page | 20

Table 6-7: Queen Street West and Existing Site Access/MacDonell Avenue Intersection Capacity Analysis

AM PK HR	Existing				Future Background (2028)				Future Total (2028)			
Mvmt	Vol	V/C	Delay (s)	LOS	Vol	V/C	Delay (s)	LOS	Vol	V/C	Delay (s)	LOS
NBLTR	4	0.01	17	C	4	0.02	17	C	-	-	-	-
EBL	63	0.08	10	A	63	0.08	10	A	63	0.07	9	A
EBT	394	0.00	0	A	404	0.00	0	A	427	0.00	0	A
EBR	2	0.00	0	A	2	0.00	0	A	-	-	-	-
WBL	2	0.00	9	A	2	0.00	9	A	-	-	-	-
WBT	233	0.00	0	A	243	0.00	0	A	246	0.00	0	A
WBR	24	0.00	0	A	24	0.00	0	A	24	0.00	0	A
SBLTR	86	0.27	19	C	86	0.27	19	C	-	-	-	-
SBLR	-	-	-	-	-	-	-	-	86	0.25	18	C
PM PK HR	Existing				Future Background (2028)				Future Total (2028)			
Mvmt	Vol	V/C	Delay (s)	LOS	Vol	V/C	Delay (s)	LOS	Vol	V/C	Delay (s)	LOS
NBLTR	14	0.14	42	E	14	0.15	48	E	-	-	-	-
EBL	74	0.13	12	B	74	0.13	12	B	74	0.12	11	B
EBT	288	0.00	1	A	358	0.00	1	A	365	0.00	1	A
EBR	5	0.00	0	A	5	0.00	0	A	-	-	-	-
WBL	6	0.01	9	A	6	0.01	10	A	-	-	-	-
WBT	404	0.00	0	A	414	0.00	0	A	434	0.00	0	A
WBR	31	0.00	0	A	31	0.00	0	A	31	0.00	0	A
SBLTR	105	0.43	28	D	105	0.44	29	D	-	-	-	-
SBLR	-	-	-	-	-	-	-	-	105	0.38	24	C

Table 6-8: Queen Street West and Existing Site Access/MacDonell Avenue Queues

AM PEAK	Available Storage (m) ${ }^{\text {(1) }}$	Existing	Future Background 2028	Future Total 2028
Mvmt		Queue (m)	Queue (m)	Queue (m)
		95th	95th	95th
NBLTR	7	0	0	-
EBL	76	0	0	0
EBT	76	0	0	0
EBR	76	0	0	-
WBL	27	0	0	-
WBT	27	0	0	0
WBR	27	0	0	0
SBLTR	35	7	7	-
SBLR	35	-	-	7
PM PEAK	Available Storage (m) ${ }^{\text {(1) }}$	Existing	Future Background 2028	Future Total 2028
Mvmt		Queue (m)	Queue (m)	Queue (m)
		95th	95th	95th
NBLTR	7	7	7	-
EBL	76	7	7	0
EBT	76	0	0	0
EBR	76	0	0	-
WBL	27	0	0	-
WBT	27	0	0	0

WBR	27	0	0	0
SBLTR	35	13	13	-
SBLR	35	-	-	13

(1) For through or shared through/right movements without dedicated turn lanes, the distance to the closest intersection or main accesses upstream that could potentially be impacted by queues has been included under available storage.

Table 6-9: Queen Street West and Proposed Site Access Intersection Capacity Analysis

AM PK HR	Existing				Future Background (2028)				Future Total (2028)			
Mvmt	Vol	V/C	Delay (s)	LOS	Vol	V/C	Delay (s)	LOS	Vol	V/C	Delay (s)	LOS
NBLR	-	-	-	-	-	-	-	-	25	0.05	12	B
EBT	-	-	-	-	-	-	-	-	469	0.00	0	A
EBR	-	-	-	-	-	-	-	-	1	0.00	0	A
WBL	-	-	-	-	-	-	-	-	3	0.00	9	A
WBT	-	-	-	-	-	-	-	-	301	0.00	0	A
PM PK HR	Existing				Future Background (2028)				Future Total (2028)			
Mvmt	Vol	V/C	Delay (s)	LOS	Vol	V/C	Delay (s)	LOS	Vol	V/C	Delay (s)	LOS
NBLR	-	-	-	-	-	-	-	-	8	0.02	14	B
EBT	-	-	-	-	-	-	-	-	437	0.00	0	A
EBR	-	-	-	-	-	-	-	-	4	0.00	0	A
WBL	-	-	-	-	-	-	-	-	20	0.03	10	A
WBT	-	-	-	-	-	-	-	-	514	0.00	0	A

Table 6-10: Queen Street West and Proposed Site Access Queues

AM PEAK	Available Storage (m) ${ }^{\text {(1) }}$	Existing	Future Background 2028	Future Total 2028
Mvmt		Queue (m)	Queue (m)	Queue (m)
		95th	95th	95th
NBLR	7	-	-	0
EBT	35	-	-	0
EBR	35	-	-	0
WBL	42	-	-	0
WBT	42	-	-	0
PM PEAK	Available Storage (m) ${ }^{\text {(1) }}$	Existing	Future Background 2028	Future Total 2028
Mvmt		Queue (m)	Queue (m)	Queue (m)
		95th	95th	95th
NBLR	7	-	-	0
EBT	35	-	-	0
EBR	35	-	-	0
WBL	42	-	-	0
WBT	42	-	-	0

(1) For through or shared through/right movements without dedicated turn lanes, the distance to the closest intersection or main accesses upstream that could potentially be impacted by queues has been included under available storage.

Existing Conditions

Under existing weekday AM and PM peak hour conditions, the signalized study intersections are indicated to be operating within capacity with V/C ratios less than 1.00 and at an acceptable overall LOS C or better. The northbound right turn at the Jameson Avenue intersection was indicated to be a movement of interest with a V / C ratio of 0.81 and LOS E with 62 seconds of delay in the AM peak hour and a V / C ratio of 0.93 and LOS E with 76 seconds of delay in the PM peak hour.

Furthermore, the unsignalized intersection indicates all movements operating within capacity with V / C ratios below 1.00, acceptable LOS of D or better, and minimal queuing (i.e. no more than 2 vehicles) with the exception of the northbound movement out of the site access during the PM peak hour. This movement of interest indicates a LOS E (42 seconds of delay) during the PM peak hour. This delay can likely be attributed to the heavy traffic flow along Queen Street East, which would limit opportunities for drivers to make left turns from the minor approaches. This is not uncommon for an unsignalized approach to an arterial road in the City of Toronto during the busiest peak of the day.

Field observations indicated that there are currently queueing constraints along Queen Street West. A queue survey of the eastbound approach at the Jameson Avenue intersection (as noted in Section 2.6.1) indicated queue lengths on average extended beyond the existing site access during both peak hours. The longest queue lengths recorded at the onset of green during both peak hours extended to the Sorauren Avenue intersection (i.e. 300 m just after 9:00 AM and 294 m just after 5:00 PM). These queueing conditions may not be captured in the synchro modelling as the flow may be metered (i.e. intersections may indicate low volumes because volumes cannot get through due to downstream queueing). Therefore, it is recognized that although the synchro analysis may indicate movements are operating within capacity and generally with acceptable delay, the model is limited in capturing the queuing conditions along Queen Street West observed in the field.

Future Background/Total Conditions

Under future background weekday AM and PM peak hour conditions, the study intersections are expected to continue operating with minimal changes to operations compared to existing.

Under future total weekday AM and PM peak hour conditions, the study intersections are expected to continue operating similar to future background. The v / c ratios, delay, and queue lengths for all movements during both peak hours indicate minimal changes with the added site traffic compared to future background conditions. No new constraints were identified as a result of the added site traffic. It is recognized that drivers making a left in or out of the proposed site access may have to rely on courtesy gaps in order to complete their movement, given the existing queuing constraints fronting the site access along Queen Street West.

7 MULTI-MODAL ANALYSIS

7.1 EXISTING MULTI-MODAL LEVEL OF SERVICE

The City of Ottawa's Multi-Modal Level of Service (MMLOS) Guidelines were adopted to generate levels of service (LOS) to describe the convenience and comfort level of existing and proposed active transportation infrastructure within the subject area. The results are presented on a scale of A to F, where A represents preferred conditions and F represents the least preferred conditions, depending on the criteria of each mode. It should be noted that LOS is not always the desired target for all modes, as each mode is considered independently, and the minimum LOS targets depend on the context of the street and surrounding area.

The transit level of service (TLOS) was conducted for the major signalized study intersections along Queen Street West, including at Lansdowne Avenue and at Jameson Avenue based on the "worst intersection" approach. It should be noted that the evaluation is only confined to surface bus and streetcar routes operating within mixed general traffic and does not consider rapid transit options in the area (i.e. TTC subway service, Metrolinx GO service), which would provide grade-separated rapid transit access unencumbered by general vehicle traffic.

The pedestrian level of service (PLOS) and cycling level of service (BLOS) evaluations were conducted for the "worst section" of the segment of Queen Street West between Macdonell Avenue and Lansdowne Avenue near the subject site.

A breakdown of the calculations and lookup tables from the MMLOS Guidelines are provided in Appendix K. Table 7-1 and Table 7-2 summarize the results for transit and pedestrians/cyclists, respectively.

Table 7-1: Surface Transit Level of Service Evaluation

Intersection Evaluation	Criteria	Queen St W \& Lansdowne Ave	Queen St W \& Jameson Ave
TLOS	delay	F	E

Table 7-2: Pedestrian and Bicycling Level of Service Evaluation

Segment Evaluation	Criteria	Queen St W - Macdonell Avenue and Lansdowne Avenue
PLOS	- sidewalk width - boulevard width - motor vehicle volume (AADT/lane) - presence of on-street parking - vehicle operating speed	C
BLOS	- type of cycling facility - street width - vehicle operating speed - width of bike lane (if present) - bike lane blockage (if present)	D

The two signalized intersections along Queen Street West closest to the subject site indicate a TLOS score of F (at Lansdowne Avenue) and a TLOS score of E (at Jameson Avenue). Transit vehicles mix with general traffic without dedicated space to operate, which leads to transit delays at the signalized intersections. The results therefore indicate that surface transit is generally not prioritized at study area intersections and has no dedicated infrastructure.

Pedestrian conditions on the analyzed segment is indicated to be PLOS C on both the north side and the south side of Queen Street West. There are sidewalks with boulevard space provided along the corridor, which also has low vehicle operating speeds. Conditions are somewhat impacted by the road width and vehicle volumes along Queen Street West. The results therefore indicate that the study area pedestrian environment is characterized by appropriate infrastructure and a largely comfortable experience for users.

The segment indicates a BLOS of D due to the lack of cycling facilities available and the road width, providing a less comfortable experience for cyclists (particularly new cyclists) compared to dedicated cycling facilities. The evaluation results demonstrate that on-street cycling is currently used given the low vehicle volumes, but conditions may be impacted by high vehicle volumes and limited infrastructure and connectivity to other existing cycling infrastructure.

7.2 FUTURE BACKGROUND MULTI-MODAL LEVEL OF SERVICE ASSESSMENT

No improvements in transit, pedestrian or cycling infrastructure along the studied areas were assumed; therefore, no change in results are expected to the TLOS, PLOS and BLOS compared to existing conditions.

7.3 SITE MULTI-MODAL LEVEL OF SERVICE ASSESSMENT

As indicated prior in Table 4-3, the new two-way site trips estimated for transit, walking, and cycling modes for each weekday peak hour are as follows:

- Transit: 50 to 55;
- Walking: 15 to 20; and
- Cycling: 5 to 10.

As discussed below, these new trips are expected to be supported by the multi-modal transportation network surrounding the subject site. In addition, the Transportation Demand Management (TDM) plan for the subject site (see Section 11) include strategies to support and encourage users to travel by alternative modes to driving.

7.3.1 Transit Trips

The proposed development is projected to generate 50 to 55 two-way transit trips per weekday peak hour.
The routes expected to be taken by the transit trips were estimated using 2016 TTS transit data for the same traffic zones as used for mode split and vehicle trip distribution, filtered for outbound home-based trips during the weekday AM peak period. A breakdown of the routes is outlined in Table 7-3 below. Detailed TTS results are indicated in Appendix \mathbf{X}.

Table 7-3: Breakdown of Expected Routes for Local Transit Trips

Transit	$\%$
TTC	99%
Bus	23%
Streetcar	75%
Subway	1%
GO	1%
Train	1%
Total	100%

Based on the TTS data, approximately 75% of transit trips leaving the subject site are expected to use the nearby streetcar routes, particularly the 504 King Streetcar (closest stop is located at the King Street West and Jameson Avenue intersection, about 400 m south of the subject site, equivalent to a 5 minute walk) and the 501 Queen Streetcar (closest stop is located at the Jameson Avenue intersection just east of the subject site). Both streetcars are part of the 10-minute network and operate 10 minutes or better, all day, every day. The proposed development is anticipated to add up to 7 riders for a streetcar per peak hour, which is considered minimal.

7.3.2 Walking Trips

The proposed development is projected to generate 15 to 20 two-way walking trips per weekday peak hour. This is in addition to the walking trips that represent the first/last connection for transit trips from/to the subject site. These pedestrian trips are expected to be supported by the continuous pedestrian facilities in the study area. However, many of the additional walk-only commute trips may be converted from transit trips, so the impact to the pedestrian infrastructure surrounding the site would remain relatively unchanged.

7.3.3 Cycling Trips

The proposed development is projected to generate 5 to 10 two-way cycling trips per weekday peak hour. These forecasted cycling trips are minimal and are anticipated to have minimal impact on the surrounding network.

8 PARKING ASSESSMENT

This section reviews the vehicular parking standards based on the zoning by-law requirements applicable to the subject site.

8.1 ZONING BY-LAW REQUIREMENTS - BICYCLE PARKING

The bicycle parking provision of the proposed development has been assessed according to the standards set by the City of Toronto Zoning By-Law 569-2013 and the Toronto Green Standard Tier 1 Guidelines. The subject site is located in Bicycle Zone 1, and the required bicycle parking rates and bicycle parking provisions are summarized in Table 8-1.

Table 8-1: Zoning By-Law Bicycle Parking Requirements

Land Use	Units/GFA	ZBL 569-2013 Bike Zone 1	Min. Requirement	Proposed Supply
Residential	249 Units	Short Term: 0.2 spaces/unit	50	50
		Long Term: 0.9 spaces/unit	225	225
Retail	$789 \mathrm{~m}^{2}$	Short Term: None Required (GFA < $2000 \mathrm{m2}$)	0	0
		Long Term: None Required (GFA < $2000 \mathrm{m2}$)	0	0
Total		$\mathbf{2 7 5}$	275	

According to the City of Toronto Zoning By-law 569-2013 and TGS, the subject site requires a total of 275 bicycle parking spaces, consisting of 50 short-term and 225 long-term residential spaces, resulting in a total of 275 bicycle parking spaces. Regarding bicycle parking requirements for the retail land use, Section 230.5.10.1 (3) in the City of Toronto Zoning By-law 569-2013, "if a bicycle parking space is required for uses on a lot, other than a dwelling unit, and the total interior floor area of all such uses on the lot is 2000 square metres or less, then no bicycle parking space is required". As such, no retail bicycle parking spaces are required. The proposed supply therefore meets the bicycle parking requirements of the zoning by-law.

8.2 ZONING BY-LAW REQUIREMENTS - VEHICLE PARKING

The parking requirements for vehicle parking are governed by the parking standards set out in By-law 892022. The City of Toronto undertook a review of its parking requirements for new developments under a study titled Review of Parking Requirements for New Development, which commenced in January 2021 and concluded in November 2021.

On November 25, 2021, City staff recommended the adoption of Zoning By-law Amendments to the city-wide Zoning By-law 569-2013 to modify the current standards for automobile parking as a result of this review. In recognition that the demand for parking is shifting from societal changes, decreases in automobile ownership, increases in the popularity of sustainable alternatives, and significant investments in transit infrastructure, the Zoning By-law Amendment removes the minimum residential parking requirements for multi-unit residential buildings and introduces updated maximum parking requirements for developments throughout the City.

The Zoning By-law Amendment was approved by City Council on December $15^{\text {th }}$, 2021, enacted in February 2022 as By-law 89-2022 and is now fully in force.

In addition to the removal of most parking minimums, the Zoning By-law Amendment has separated parking requirements from the existing Policy Areas, which will be relevant to the updated parking standards. Two (2) Parking Zones (PZ) are proposed. As illustrated in Figure 8-1, the subject site falls within Parking Zone B.

Therefore, the requirements based on the Zoning By-law Amendment Parking rates for Parking Zone B are summarized below in Table 8-2.

Figure 8-1: Proposed Parking Zones

Source: City of Toronto, February 2022

Table 8-2: Zoning By-law 89-2022 Vehicular Parking Standards - Parking Zone B

Unit Type	Units/GFA	ZBL 89-2022 Parking Zone B				Proposed Supply
		Min. Parking Rate (spaces/unit)	Max. Parking Rate (spaces/unit)	Min. Required Spaces		
Studio	9 Units	-	0.7	0	6	59
1 Bedroom	130 Units	-	0.8	0	104	
2 Bedroom	84 Units	-	0.9	0	75	
3 Bedroom	26 Units	-	1.1	0	28	
Residential Sub-Total				0	213	59
Visitor	249 Units	$2+0.05 /$ unit	1/unit for the first 5 units and 0.1/unit for the 6th and subsequent unit	14	29	14
Retail	789 m²	-	4.0 spaces/100m2	0	31	0
Non-Residential Sub-Total				14	60	14
Total				14	273	73

According to Zoning By-law 89-2022, the proposed development is subject to a minimum parking requirement of 14 visitor spaces and an overall maximum of 273 residential, visitor and retail spaces. As such, the parking supply proposed for the subject site consisting of 59 residential and 14 visitor parking spaces will satisfy the requirements from the zoning by-law requirement.

All residential and visitor parking spaces will be equipped with Electric Vehicle (EV) outlets to which meets TGS V4's EV infrastructure requirements for residential parking spaces and exceeds the requirement for visitor parking spaces, which will be further discussed in Section 10.1.2.

8.3 ACCESSIBLE VEHICLE PARKING REQUIREMENTS

The City of Toronto Zoning By-law 569-2013, through by-law 89-2022, provides updated parking requirements to determine effective parking requirements to calculate the required accessible parking supply for the subject site. The by-law requirements and proposed supply are illustrated below in Table 8-3.

Table 8-3: Accessible Parking Requirements

Unit Type	Units/GFA	Rate (Parking Zone B)	Effective Parking Spaces	Required Accessible Spaces	Provided Accessible Spaces
Studio	9 Units	0.7 spaces/unit	6	8	9
1 Bedroom	130 Units	0.8 spaces/unit	104		
2 Bedroom	84 Units	0.9 spaces/unit	75		
3 Bedroom	26 Units	1.1 spaces/unit	28		
		Residential Sub-total	215		
Visitor Parking	249 Units	0.1 spaces/unit	24		
Residential and Residential Visitor Total			242	8	
Retail	789 m ${ }^{2}$	1.0 space/100 m2 GFA	7	1	
Min. Number of Accessible Spaces				9	9

The proposed development is required to provide a minimum of 9 accessible parking spaces as outlined in the zoning by-law requirements. The proposed development will satisfy the requirements by providing 9 accessible parking spaces. Based on the calculation provided above, 1 accessible retail parking space is
required to be provided on-site. However, as no retail spaces are provided on-site, no designated accessible retail parking spaces are provided. Of note, the site is located adjacent to the streetcar stop for the 501 Queen Streetcar at Jameson and Queen Street West. This stop is designated as an accessibility stop and as such will provide transportation access to the retail component of the subject site without requiring the provision of a parking space on-site or requiring an onerous walk to the subject site.

9 LOADING ASSESSMENT

The City of Toronto By-Law 569-2013 was reviewed to determine the loading requirements for the proposed development. Table 9-1 summarizes the loading requirements according to the City's by-law and the proposed supply.

Table 9-1: Zoning By-Law Loading Requirements

Land Use	Unit Count/GFA	ZBL 569-2013		Proposed Supply
		Loading Space Required		
Residential	249 Units	31 to 399 dwelling units	1 Type "G"	1 Type "G/B"
Retail	$789 \mathrm{~m}^{2}$	500 to $1,999 \mathrm{~m}^{2}$	1 Type "B"	
Total				

The subject site is required to provide one (1) Type "G" and one (1) Type "B" loading space which meets the loading requirements of the zoning by-law. One shared Type "G/B" loading space is provided on-site to accommodate the loading requirements. Given the sharing of the loading space, it is anticipated that future deliveries for the retail component will be conducted in a manner that does not conflict with City garbage collection.

A review of the functionality and accessibility of the proposed loading space indicates that the proposed loading space can be safely accessed and egressed by a garbage truck. Swept paths were conducted which confirmed that garbage trucks will be able to enter the loading zone and reverse back out of the space to egress the site. Swept path diagrams are provided in Appendix L.

10 TRANSPORTATION DEMAND MANAGEMENT

The subject site is required to meet the Tier 1 Performance Measures listed under the Toronto Green Standards Version 4 (TGS V4) for Mid- to High -Rise Residential and Non-Residential developments. This section will review the TGS V4 development features based on the applicable requirements for the study area. Overall, the proposed development is compliant with all the Tier 1 Performance Measures where applicable with respect to transportation-related measures.

10.1 LOW EMMISSIONS TRANSPORTATION

10.1.1 Single-Occupant vehicle Trips

Section AQ 1.1 of TGS V4 requires that the proposed development reduce single-occupancy-vehicle trips by 25\%. This will be achieved through the inclusion of a variety of multimodal infrastructure strategies and Transportation Demand Management (TDM) measures. The subject site meets this requirement as the proposed development includes a TDM plan. This plan will be discussed in greater detail in Section 10.

10.1.2 Electric Vehicle Infrastructure

Section AQ 1.2 of the TGS V4 requires that parking spaces in the proposed development be equipped with an Energized Outlet in accordance with Zoning By-Law 569-2013. According to the Zoning By-Law, all residential parking spaces provided for dwelling units and 25% of non-residential parking spaces located in a mixed-use building must include an energized outlet to ensure electric vehicles can be accommodated. Table 10-1 summarizes the required Electric Vehicle (EV) parking supply.

Table 10-1: Zoning By-Law 569-2013 Electric Vehicle Parking Standards

Use	Proposed Spaces	Minimum Rate	Required EV Spaces	Proposed EV Spaces
Residential	59	100% of parking spaces	59	59
Visitor	14	25% of parking spaces	4	14
Retail	0	25% of parking spaces	0	0
Total	73	-	63	73

All proposed residential and visitor parking spaces on-site will provide an electrical rough-in to ensure EVs can be accommodated on-site, thus supporting sustainable travel options for the subject development. This meets the requirement for residential parking spaces and exceeds the requirement for the visitor parking spaces. The new EV infrastructure will help enable a wider range of individuals to have access to parking spaces that support low emission transportation modes.

10.2 CYCLING INFRASTRUCTURE

10.2.1 Bicycle Parking Rates

Section AQ 2.1 of TGS V4 requires developments to provide bicycle parking spaces in accordance with Zoning By-Law 569-2013. These rates will inform the bicycle parking supply to be provided on-site to accommodate travel by bicycle to and from the subject site. As discussed in Section 8.1, the proposed development will provide bicycle parking facilities that meet the requirements for long-term and short-term bicycle parking for the residential uses. This will support and encourage active transportation and travel by bicycle in place of a personal vehicle for residents and visitors.

10.2.2 Long-Term Bicycle Parking Location

Section AQ 2.2 of TGS V4 requires developments to provide long-term bicycle parking in a secure controlledaccess bicycle parking facility or purpose-built bicycle locker on the first or second storey of the building or on levels below ground commencing with the first level below ground. Long-term bicycle parking can be provided on levels below ground when at least 50 percent of the area of the level is occupied by bicycle parking spaces until all required spaces have been provided. However, required spaces such as elevator shafts and mechanical rooms are omitted when calculating for the net area of a level.
The subject development proposes to place long-term residential bicycle parking spaces on the P1 parking level in a secure bicycle storage room.

10.2.3 Short-Term Bicycle Parking Location

Section AQ 2.3 of TGS V4 requires developments to provide short-term bicycle parking in a highly visible and publicly accessible location at-grade or on the first parking level of the building below grade.

The site plan for the subject site proposes to provide short-term residential bicycle parking at-grade at the rear of the subject site near the southwest corner of the property. This provides easy access for visitors to first park their bikes. The subject site therefore meets this requirement through appropriate provisions in the site plan.

10.2.4 Electric Bicycle Infrastructure

Section AQ 2.4 of TGS V4 requires developments to provide bicycle parking spaces equipped with an energized outlet for at least 15 percent of the required long-term bicycle parking spaces.

As such, 15% of long-term residential bicycle parking spaces are equipped with an energized outlet.

10.2.5 Shower and Change Facilities

Section AQ 2.5 of TGS V4 requires developments to provide shower and change facilities consistent with the rate identified in Zoning By-Law 569-2013. Since the proposed development includes residential uses and does not require bicycle parking spaces for the retail component, on-site shower and change facilities are not required.

10.3 PEDESTRIAN INFRASTRUCTURE

Section 3.1 of the TGS V4 requires developments to provide safe, direct, universally accessible pedestrian routes that connect the buildings on-site to the off-site pedestrian network and priority destinations. The subject site meets this requirement as the plan for the development includes several elements to maintain and improve pedestrian access and permeability through the subject site. Building entrances connect to the adjacent sidewalks along Queen Street West and allow ease of access to the nearby transit stop for the 501 Queen Streetcar which is adjacent to the subject site.

Section AQ 3.2 requires developments to provide a context-sensitive pedestrian clearway that is a minimum of 2.1 m wide, to safely and comfortably accommodate pedestrian flow. At least a 2.1 m sidewalk is currently existing along Queen Street West with a sidewalk of at least 2.1 m being provided along the street fronting the subject site according to the site plan.

Section 3.3 of the TGS V4 requires developments to provide covered outdoor waiting areas for pedestrian comfort and protection from inclement weather. Covered outdoor waiting areas are proposed via canopies at the building entrances.

Section 3.4 of the TGS V4 requires developments to provide pedestrian-scale lighting that is evenly spaced, continuous and directly onto sidewalks pathways, entrances, outdoor waiting areas and public spaces. The subject site will meet this requirement by providing appropriate pedestrian scale lighting throughout the site plan. These measures will foster a safer experience for pedestrians regardless of the time of day and promote walking, biking, and riding public transit as a viable option to travel to and from the subject site.

11 TRANSPORTATION DEMAND MANAGEMENT PLAN

Transportation Demand Management (TDM) is a set of strategies that strive towards a more efficient transportation network by influencing travel behaviour. Effective TDM measures can reduce vehicle usage and encourage residents to engage in more sustainable methods of travel. There are various opportunities to incorporate TDM measures that support alternative modes of transportation. The recommendations should enhance non-single occupant auto vehicle trips for future residents of the subject development.

These TDM strategies are critical in achieving a balanced multi-modal transportation system in the City of Toronto and supporting goals towards sustainable development as identified by the Toronto Green Standards (TGS) and TransformTO Net Zero Strategy to achieve net zero greenhouse gas emissions by 2040.

A specific requirement of the TGS is to reduce single-occupancy vehicle (SOV) trips generated by a proposed development by 25%. The following multimodal infrastructure strategies and TDM measures are recommended for consideration to support the subject site's parking strategy and role in transforming the surrounding neighbourhood. As the development moves through the development process, the TDM plan will undergo further refinement.

11.1.1 Cycling-based Strategies

On-site bicycle parking facilities.

- The proposed development will provide bicycle parking facilities to support and encourage active transportation. A supply of 225 and 50 long-term and short-term residential bicycle parking spaces, respectively, will be accommodated on-site. This supply is provided to satisfy the required rate of 0.9 spaces per unit for residents and 0.2 spaces per unit for residential visitors.

Additionally, the provision of electric bicycle infrastructure in line with Toronto Green Standard version 4 requirements, will enable a wider range of residents to have access to a bicycle parking space on-site that meets their needs.

- The proposed development will provide bicycle parking facilities both at-grade and in the underground parking level, in secure locations. This provision will accommodate bike parking in a manner that is safe, secure and convenient.

Provision of Bicycle Repair Stations.

- One (1) bicycle repair station is provided on-site. The provision of the bicycle repair stations will support the use of cycling as an alternative mode of transportation to further reduce SOV trips from the site and reduce barriers to cycling. A bicycle repair station is provided near the long-term bicycle parking storage areas on-site.

Promote and increase cycling awareness and multi-modal transport.

- It is recommended that information packages be provided to residents of the proposed development to help encourage active transportation and increase awareness of different travel alternatives. The package should include information regarding the environmental and health benefits of cycling, rules of the road, as well as maps of active transportation available in the surrounding area.

Provision of Bike Share memberships for residents.

- The subject site is located within walking distance to Bike Share docking stations. This will provide residents with a convenient option to travel for short trips and discourage single-occupancy vehicle usage. As such, it is recommended that Bike Share memberships are provided for each unit of the subject site and are subsidized for one (1) year.

Estimated Impact: Based on the trip generation conducted for the subject site from the proxy trip generation rates, about 7% and 3% of trips undertaken to and from the site are cycling trips in the AM and PM peak hours (Table 4-3), respectively, indicating a prevalence of cycling usage as a mode of transportation. The combination of these robust measures, notably on-site bicycle parking facilities, bicycle repair stations, promotional/information packages and provision of Bike Share membership for all units, have the ability to further encourage the use of transit with an estimated impact of approximately 10%.

11.1.2 Pedestrian-Based Recommended Strategies

Building entrances are to be oriented close to the street with direct connections to the pedestrian pathways.

- The proposed pedestrian entrance for the residential and retail components are oriented to a sidewalk at greater than 2.1 m in width along Queen Street West to provide convenient linkages for pedestrians, transit users and cyclists to access the residential units and ground-floor retail, respectively. The development should also maintain enhanced landscaping and facades throughout the site to encourage walking and ensure minimal barriers to provide a safe and accessible pedestrian realm.

Mixed land uses to facilitate walking trips.

- The inclusion of ground-floor retail in the same building as residential units provides a great opportunity for residents to walk to retail destinations that they may otherwise drive to. This retail space within the proposed development will also provide opportunities for nearby local residents to walk to the destinations via the Queen Street West and Jameson Avenue sidewalk network, or from nearby transit stops, which will ultimately further discourage automobile travel in the area.

Estimated Impact: Based on the trip generation conducted for the subject site from the proxy trip generation rates, and as determined through the utilization of TTS modal split data (Table 4-1), about 15-16\% of trips undertaken to and from the site are walking trips in the AM and PM peak hours (Table 4-3), indicating a prevalence of walking trips. The combination of these robust pedestrian-based measures, inclusive of the location of the building entrances close to the street providing connections to pedestrian pathways and the provision of mixed-land use to reduce SOV trips, will have the ability to further encourage walking with an estimated impact of at least 1-2\% considering how very walkable the local area is as noted from the walkscore (91/100 - "Walkers Paradise") provided in Section 2.4.

11.1.3 Transit-Based Strategies

Transit incentive program.

- As PRESTO has become a dominant form of payment for transit throughout the Greater Toronto and Hamilton Area (GTHA), it is recommended that pre-loaded PRESTO cards be offered to units in their welcome packages. This incentive, coupled with the site's proximity to transit from the 501 Queen Streetcar and the 47 Lansdowne bus, provides an opportunity for residents to experience the benefits of using adjacent transit facilities.

Communication strategy and information packages.

- In order for residents to take advantage of the transit services surrounding the subject site, it is recommended that the owners provide information packages and communications to increase transit awareness and multimodal transport by encouraging active transportation and different travel demand management programs. The information packages should contain public transit information such as route maps and schedule timetables.

Estimated Impact: Based on the trip generation conducted for the subject site from the proxy trip generation rates, and as determined through the utilization of TTS modal split data (Table 4-1), about 49-51\% of trips undertaken to and from the site are transit trips in the AM and PM peak hours (Table 4-3), indicating a prevalence of transit usage. The combination of these robust measures, notably the provision of pre-loaded PRESTO cards to all units on-site, given that the Queen Streetcar stop is located adjacent to the northeast corner of the subject site, will have the ability to further encourage the use of transit with an estimated impact of at least 20%.

11.2 IMPACT OF TDM MEASURES

The proposed TDM measures are expected to further support the site's proposed parking strategy by increasing the convenience and attractiveness of taking transit, walking, or cycling to/from the subject site. The proposed TDM measures will help further reduce vehicle activity associated with the subject site and encourage a lifestyle that largely relies upon transit and active transportation. Table 11-1 summarizes the proposed strategies and the expected auto trip reductions.

Table 11-1: Summary of TDM Strategies and Estimated Impacts

Recommended TDM Measures	Cycling-Based Strategies	Impact ${ }^{\text {(1) }}$
On-site bicycle parking facilities	+ Supports and encourages cycling as primary mode of travel + Provides secure bicycle parking and bicycle repair station on-site	
Provision of bicycle repair stations	+ Support cycling as an alternative to SOV trips + Reduce barriers to cycling	
Promote and increase cycling awareness and multi-modal transport	+ Encourages active transportation and increase awareness of active travel alternatives + Spreads awareness of benefits of cycling	\sim

Note: (1) - Consultant Estimate
The combination of these TDM strategies listed above is expected to significantly reduce the auto-dependency of residents and visitors in the subject development and encourage more sustainable travel habits. This thereby enables the requirements of TGS V4 to be met and contributes to a 25% SOV reduction for the subject development.

11.3 TDM MONITORING

It is recommended that ongoing monitoring and evaluation be undertaken to collect data and information regarding TDM performance measures. The key goal of TDM monitoring is to provide useful information on identifying successful program activities, improvements to existing programming as well as the potential development of future programs. The owner should perform periodic evaluation to assess how well the TDM Program is achieving the goal in reducing the number of single-occupant vehicle trips generated by the site. A baseline survey and annual monitoring five (5) years onward is recommended to ensure effective monitoring.

12 CONCLUSIONS AND RECOMMENDATIONS

- The development proposal consists of a 12 -storey mixed-use building. A total of 249 residential units and approximately $789 \mathrm{~m}^{2}$ of ground floor retail GFA are proposed. Access to the development is proposed via an unsignalized, all-moves site access via a laneway onto Queen Street West.
- The subject site is located in an area that is well-serviced by the Toronto Transit Commission (TTC) transit networks. The subject site is within walkable distance of bus stops and a streetcar stop for the 501 Queen Streetcar. The subject site is located in a neighbourhood with some nearby cycling infrastructure and an excellent pedestrian network and environment.
- The proposed development is anticipated to generate 29 two-way auto driver and auto passenger trips during the AM peak hour (4 inbound and 25 outbound) ad 32 two-way auto driver and auto passenger trips during the PM peak hour (24 inbound and 8 outbound). Furthermore, for transit trips, the subject site is anticipated to generate 49 two-way trips in the AM peak hour (17 inbound and 33 outbound) and 54 two-way trips in the PM peak hour (33 inbound and 21 outbound). For walking trips, 16 two-way AM peak hour trips (5 inbound and 10 outbound) and 17 two-way PM peak hour trips (11 inbound and 6 outbound) are anticipated to be generated. For cycling trips, 7 two-way AM peak hour trips (7 outbound only) and 3 two-way PM peak hour trips (2 inbound and 1 outbound) are anticipated to be generated.
- Under existing conditions the signalized and unsignalized intersections all operate within capacity with only two movements of interest noted. It should also be noted that queuing constraints were identified from field observations that may not be captured through Synchro as the flows may be metered. As such the model is limited in capturing queueing conditions that may exist in the field. Under future background conditions, minimal change in operations are seen, as well as minimal change in operations with the addition of site traffic in future total conditions and no new constrains are added.
- The development is providing 73 vehicle parking spaces consisting of 59 residential spaces and 14 visitor parking spaces. The proposed parking supply will be acceptable and will satisfy the minimum requirements of the zoning by-law.
- The proposed bicycle parking supply of 275 residential spaces, consisting of 50 short-term and 225 long-term spaces meeting the requirements under the City of Toronto Zoning Bylaw 569-2013. The proposed bicycle parking supply satisfies the minimum requirements of the zoning by-law.
- The provision of one (1) shared Type " G / B " loading space satisfies the By-law requirements.
- The proposed development will meet all of the Tier 1 Performance Measures in the Toronto Green Standards Version 4 (TGS V4) where applicable by including the required design features in the site plan.

- A set of transportation demand management (TDM) measures have been recommended to reduce single-occupant vehicle trips the required 25% according to the TGS Version 4 requirement and encourage multi-modal travel alternatives. A TDM plan containing these measures and a monitoring strategy has been included.

APPENDIX A
Terms of Reference

Daniel Reynolds
City of Toronto
55 John St,
Toronto ON M5V 3C6

Dear Daniel Reynolds,

RE: Terms of Reference
 Transportation Impact Study for Proposed Mixed-Use Development 1437-1455 Queen Street West, City of Toronto

We wish to confirm the following work plan for a Transportation Impact Study (TIS) in support of the Zoning By-law Amendment (ZBA) application for the proposed mixed-use residential development located at 14371455 Queen Street West in the City of Toronto. Figure 1 below illustrates the subject site.

Figure 1: Subject Site and Proposed Study Area (Source: Google Earth, retrieved January 2023)

The TIS will be conducted following the City of Toronto's Guidelines for the Preparation of Transportation Impact Studies (2013). The following outlines the proposed Terms of Reference for the TIS for your review and approval.

Proposed Redevelopment

The subject site is currently occupied by several low-rise retail buildings and a surface parking lot. The proposed development will involve replacing the existing land uses with an 11-storey residential tower containing 244 residential units, $853 \mathrm{~m}^{2}$ of ground floor retail GFA, and one level of underground parking. Vehicular and loading access to the site is proposed via a laneway connection to Queen Street West on the west side of the subject site. The latest available conceptual plan is illustrated below in Figure 2.

Figure 2: Conceptual Plan (Source: Raw Design Inc., Oct 2022)

Study Area \& Traffic Data

LEA will review the existing conditions of the proposed study area, including the existing road, active transportation, and transit networks. As illustrated in Figure 1, the proposed study area includes the following intersections:

- Lansdowne Avenue and Queen Street West (Signalized);
- Jameson Avenue and Queen Street West (Signalized); and
- Sorauren Avenue and Queen Street West (Signalized).

LEA proposes to survey the intersections during the weekday AM and PM peak periods.

Peak hour factors, heavy vehicle percentages, and conflicting pedestrian/cyclist volumes will be adopted based on the existing turning movement count (TMC) data. The latest signal timing plans will be obtained from City staff.

Study Horizons and Traffic Assessment

The TIS will assess traffic operations during the weekday AM peak hour and the weekday PM peak hour for the study area intersections. A five (5) year horizon period to the year 2028 will be assessed as part of the study.

Synchro 11.0 software will be used to perform intersection capacity analysis, utilizing the methodology of the 2000 Highway Capacity Manual and input parameter values consistent with the City of Toronto's Guidelines for Using Synchro 11 (Including SimTraffic 11), dated January 15, 2021.

Background Traffic

General Corridor Growth Rate - LEA will obtain historical TMC data in the study area to determine appropriate growth rates to apply for the major study corridors for the 2028 study horizon.

Road Network Improvements - LEA will investigate and account for any anticipated road improvements in the study area.

Background Development Traffic - LEA is requesting that the City confirm the list of background developments provided in Table 1.

Table 1: Background Developments (Source: City of Toronto Development Applications)

File Number	Location	Description
22138059 STE 04 SA	1521 Queen St W	95 residential units; $293 \mathrm{~m}^{2}$ retail GFA
21251366 STE 04 SA	1375 Queen St W	50 residential units; $264 \mathrm{~m}^{2}$ commercial GFA
19112609 STE 04 OZ	150 Dunn Ave	Expansion to long-term care facility with a 60-storey wing containing 192 beds with new parking
20200379 STE 04 OZ	8-14 Brock Ave \& 1354- 1360 Queen St W	172 residential units; $386.1 \mathrm{~m}^{2}$ commercial GFA

Trip Generation, Distribution and Assignment
The trip generation methodology for the proposed development is as follows:

- Proposed residential use: LEA is proposing to collect trip generation survey data at a proxy site (15 \& 25 Stafford Street) with comparable land use characteristics and transportation context as the subject site. This data will be compared to the trip generation survey data collected at the same proxy site prior to the pandemic (which was used for two approved developments nearby at 1182 King Street W and 1221 King Street West) to determine appropriate residential trip generation rates to apply.

- Proposed retail use: Given the scale of the retail use and the local travel characteristics, it is assumed that the proposed retail use will attract local trips already in the area but is not expected to generate new vehicle trips solely for this use. As such, no new vehicle trip generation will be included.
- Existing commercial use: Existing commercial trips will be removed based on the observed TMC data.

The local mode split will be estimated using the 2016 Transportation Tomorrow Survey (TTS). Trip distribution and assignment will be based on a review of 2016 TTS data as well as observations of traffic patterns and existing turn permissions/prohibitions.

Multi-Modal Transportation Assessment

A multi-modal level of service (MMLOS) evaluation of the surrounding transit, pedestrian, and cycling environments will be conducted adopting the City of Ottawa's Multi-Modal Level of Service Guidelines. This evaluation will assess the level of convenience and comfort of transit and active transportation infrastructure users given existing conditions, planned background network changes, and the impact of site generated trips.

Site Specific Transportation Improvements

Based on the results of the TIS, LEA will identify whether transportation related improvements or mitigation measures are required to accommodate traffic generated by the proposed development.

Parking \& Loading
The site is currently subject to City of Toronto Zoning By-Law 569-2013, which will be reviewed for parking and loading requirements.

Transportation Demand Management

A TDM plan will be completed and provide recommendations to promote alternate modes of travel. The TDM will justify the appropriate parking requirement and reduce the auto dependency of the subject site.

Site Plan Review

A site plan review will be undertaken to ensure vehicular movements can be accommodated at the proposed loading bay, drive aisle, garage ramp, etc. and loading and servicing vehicles can effectively access, circulate, and/or perform loading activities on-site.

Should you have any questions or concerns regarding these terms of reference, please do not hesitate to contact me at pperera@lea.ca.

Yours truly,
LEA CONSULTING LTD.

Pavani Perera, EIT, B.A.Sc.
Transportation Analyst

Pavani Perera

From:

Sent:

To:
Cc:
Subject:

Daniel Reynolds Daniel.Reynolds@toronto.ca
February 6, 2023 12:03 PM
Pavani Perera
Zara Georgis; Joia Mendez
RE: Terms of Reference_1437-1455 Queen Street West, Toronto

External Sender

Hey Pavani,
Thanks for this submission. My comments are as follows:

- The traffic assessment methodology is acceptable, including existing/future assumptions, study scope, etc.;
- No major infrastructure works are anticipated along this segment of Queen Street West, as far as I can determine at this time;
- For parking, application of By-law No. 89-2022 (which amends 569-2013) is acceptable;
- The loading will be subject to By-law 569-2013 requirements (any deviation from the minimums will require appropriate justification);
- A full TDM plan, including provisions to be provided for the site and secured via the Site Plan Agreement (e.g. memberships to car/bike-share) is to be provided;
- The proposed access must be appropriately offset from the existing driveway to the west. This will likely require some site re-design and additional details. It is noted that the existing driveway to the west does not appear to be heavily used, however we would like to limit the width of the consolidated curb cut at this location on Queen West; and
- There is no right-of-way widening along Queen Street West for this site, though we would like a 2.5 metre wide pedestrian clearway (with a furnishing/planting zone to be provided adjacent to the curb). This may require a pedestrian clearway easement to secure the appropriate space on private land (to be determined).

Let me know if you have any other questions or concerns.

Thanks.

Daniel Reynolds
Senior Project Manager, Development Planning \& Review Area 1
Transportation Services
Metro Hall, 17th Floor
416-392-1124
daniel.reynolds@toronto.ca

From: Pavani Perera [mailto:PPerera@lea.ca]
Sent: February 2, 2023 3:09 PM
To: Daniel Reynolds Daniel.Reynolds@toronto.ca
Cc: Zara Georgis ZGeorgis@lea.ca; Joia Mendez JMendez@lea.ca
Subject: Terms of Reference_1437-1455 Queen Street West, Toronto
Hi Daniel

We wish to confirm the attached Terms of Reference for a Transportation Impact Study for a proposed mixed-use residential development located at 1437-1455 Queen Street West in the City of Toronto.

Please let me know if you have any comments or concerns with our assumptions.

Thank you,

Pavani Perera, EIT, B.A.Sc.

Transportation Analyst

LEA Consulting Ltd.

40 University Avenue, Suite 503 | Toronto, ON | M5J 1T1
T: 9054700015 E: pperera@lea.ca W: www.LEA.ca
We've Moved!
Our Downtown office has moved, please make note of our new address above.

This e-mail is confidential and intended solely for the use of the addressee(s) listed above
Please notify the sender and delete all copies of this message together with any attached files if you have obtained this message in error.
LEA is not responsible for edited or reproduced versions of this digital data.

APPENDIX B
Traffic Data and Signal Timing Plans

Signal Timing Plans

Notes:	$\begin{array}{l}\text { Turning Restrictions: "No SB Right-Turn on Red", "No NB Right-Turn on Red", "No EB Right-Turn on Red". } \\ \\ \text { Offset Intersection, Farside EW vehicle heads with limited vision visors. }\end{array}$

Turning Movement Counts

LEA

LEA Consulting Ltd 625 Cochrane Drive

Markam, Ontario, Canada L3R 9R9 Markam, Ontario, Canada L3R 9R9
$905-470-0015 \times 240$ idinsmore@lea.ca

Turning Movement Data

LEA Consulting Ltd 625 Cochrane Drive

Markam, Ontario, Canada L3R 9R9 905-470-0015 x240 idinsmore@lea.ca

Turning Movement Data Plot

EA

LEA Consulting Ltd 625 Cochrane Drive

Markam, Ontario, Canada L3R 9R9 905-470-0015 x240 idinsmore@lea.ca

Count Name: 23322_Jameson Ave \& Queen St W-AM
Site Code: 23322
Start Date: 02/07/2023
Page No: 3

Turning Movement Peak Hour Data (8:30 AM)

LEA Consulting Ltd 625 Cochrane Drive

Markam, Ontario, Canada L3R 9R9 905-470-0015 x240 idinsmore@lea.ca

Turning Movement Peak Hour Data Plot (8:30 AM)

LEA

LEA Consulting Ltd 625 Cochrane Drive

Markam, Ontario, Canada L3R 9R9 Markam, Ontario, Canada L3R 9R9
$905-470-0015 \times 240$ idinsmore@lea.ca

Turning Movement Data

Start Time	Queen Street West Westbound					Jameson Avenue Northbound					Queen Street West Eastbound					Int. Total
	Thru	Left	U-Turn	Peds	App. Total	Right	Left	U-Turn	Peds	App. Total	Right	Thru	U-Turn	Peds	App. Total	
4:30 PM	107	40	0	1	147	54	14	0	74	68	14	66	1	92	81	296
4:45 PM	96	27	0	0	123	57	19	0	69	76	8	68	0	66	76	275
Hourly Total	203	67	0	1	270	111	33	0	143	144	22	134	1	158	157	571
5:00 PM	70	32	0	8	102	54	17	0	76	71	9	49	0	57	58	231
5:15 PM	94	32	0	2	126	69	20	0	71	89	6	61	0	67	67	282
5:30 PM	94	35	0	4	129	71	21	0	82	92	9	63	0	87	72	293
5:45 PM	113	50	0	2	163	57	18	0	73	75	7	77	0	89	84	322
Hourly Total	371	149	0	16	520	251	76	0	302	327	31	250	0	300	281	1128
6:00 PM	87	46	0	1	133	64	20	0	72	84	9	86	0	65	95	312
6:15 PM	90	37	0	0	127	36	14	0	61	50	12	66	0	58	78	255
6:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Grand Total	751	299	0	18	1050	462	143	0	578	605	74	536	1	581	611	2266
Approach \%	71.5	28.5	0.0	-	-	76.4	23.6	0.0	-	-	12.1	87.7	0.2	-	-	-
Total \%	33.1	13.2	0.0	-	46.3	20.4	6.3	0.0	-	26.7	3.3	23.7	0.0	-	27.0	-
Lights	636	295	0	-	931	451	140	0	-	591	71	471	1	-	543	2065
\% Lights	84.7	98.7	-	-	88.7	97.6	97.9	-	-	97.7	95.9	87.9	100.0	-	88.9	91.1
Buses	57	1	0	-	58	1	1	0	-	2	0	35	0	-	35	95
\% Buses	7.6	0.3	-	-	5.5	0.2	0.7	-	-	0.3	0.0	6.5	0.0	-	5.7	4.2
Trucks	18	1	0	-	19	5	2	0	-	7	1	5	0	-	6	32
\% Trucks	2.4	0.3	-	-	1.8	1.1	1.4	-	-	1.2	1.4	0.9	0.0	-	1.0	1.4
Bicycles on Road	40	2	0	-	42	5	0	0	-	5	2	25	0	-	27	74
\% Bicycles on Road	5.3	0.7	-	-	4.0	1.1	0.0	-	-	0.8	2.7	4.7	0.0	-	4.4	3.3
Bicycles on Crosswalk	-	-	-	0	-	-	-	-	10	-	-	-	-	12	-	-
\% Bicycles on Crosswalk	-	-	-	0.0	-	-	-	-	1.7	-	-	-	-	2.1	-	-
Pedestrians	-	-	-	18	-	-	-	-	568	-	-	-	-	569	-	-
\% Pedestrians	-	-	-	100.0	-	-	-	-	98.3	-	-	-	-	97.9	-	-

LEA Consulting Ltd 625 Cochrane Drive

Markam, Ontario, Canada L3R 9R9 905-470-0015 x240 idinsmore@lea.ca

Turning Movement Data Plot

EA

EA Consulting Ltd 625 Cochrane Drive

Markam, Ontario, Canada L3R 9R9 905-470-0015 x240 idinsmore@lea.ca

Count Name: 23322_Jameson Ave \& Queen S W-PM
Site Code: 23322
Start Date: 02/07/2023
Page No: 3

Turning Movement Peak Hour Data (5:15 PM)

Start Time	Queen Street West Westbound					Jameson Avenue Northbound					Queen Street West Eastbound					Int. Total
													U-Turn			
5:15 PM	94	32	0	2	126	69	20	0	71	89	6	61	0	67	67	282
5:30 PM	94	35	0	4	129	71	21	0	82	92	9	63	0	87	72	293
5:45 PM	113	50	0	2	163	57	18	0	73	75	7	77	0	89	84	322
6:00 PM	87	46	0	1	133	64	20	0	72	84	9	86	0	65	95	312
Total	388	163	0	9	551	261	79	0	298	340	31	287	0	308	318	1209
Approach \%	70.4	29.6	0.0	-	-	76.8	23.2	0.0	-	-	9.7	90.3	0.0	-	-	-
Total \%	32.1	13.5	0.0	-	45.6	21.6	6.5	0.0	-	28.1	2.6	23.7	0.0	-	26.3	-
PHF	0.858	0.815	0.000	-	0.845	0.919	0.940	0.000	-	0.924	0.861	0.834	0.000	-	0.837	0.939
Lights	331	162	0	-	493	254	77	0	-	331	30	255	0	-	285	1109
\% Lights	85.3	99.4	-	-	89.5	97.3	97.5	-	-	97.4	96.8	88.9	-	-	89.6	91.7
Buses	26	1	0	-	27	0	0	0	-	0	0	16	0	-	16	43
\% Buses	6.7	0.6	-	-	4.9	0.0	0.0	-	-	0.0	0.0	5.6	-	-	5.0	3.6
Trucks	7	0	0	-	7	2	2	0	-	4	1	1	0	-	2	13
\% Trucks	1.8	0.0	-	-	1.3	0.8	2.5	-	-	1.2	3.2	0.3		-	0.6	1.1
Bicycles on Road	24	0	0	-	24	5	0	0	-	5	0	15	0	-	15	44
\% Bicycles on Road	6.2	0.0	-	-	4.4	1.9	0.0	-	-	1.5	0.0	5.2	-	-	4.7	3.6
Bicycles on Crosswalk	-	-	-	0	-	-	-	-	8	-	-	-	-	7	-	-
\% Bicycles on Crosswalk	-	-	-	0.0	-	-	-	-	2.7	-	-	-	-	2.3	-	-
Pedestrians	-	-	-	9	-	-	-	-	290	-	-	-	-	301	-	-
\% Pedestrians	-	-	-	100.0	-	-	-	-	97.3	-	-	-	-	97.7	-	-

LEA Consulting Ltd 625 Cochrane Drive

Markam, Ontario, Canada L3R 9R9 905-470-0015 x240 idinsmore@lea.ca

Turning Movement Peak Hour Data Plot (5:15 PM)

LEA Consulting Ltd.

625 Cochrane Drive, $9^{\text {th }}$ Floor
M arkham, ON L3R 9R9

Project No.: 23322
Intersection: Lansdowne Ave \& Queen St W
Weather: Clear
Surveyor(s): ID

File Name : Lansdowne Ave \& Queen St W - AM
Site Code : 00023322
Start Date : 2023-02-07
Page No : 1

	Lansdowne Avenue Southbound				Queen Street West Westbound				Queen Street West Eastbound						
Start Time	Left	Right	Peds	App. Total	Thru	Right	Peds	App. Total	Left	Thru	Peds	App. Total	Exclu. Total	Inclu. Total	Int. Total
07:30	17	44	[24]	61	57	10	[8]	67	36	85	[0]	121	32	249	281
07:45	16	32	[24]	48	62	13	[9]	75	47	77	[1]	124	34	247	281
Total	33	76	[48]	109	119	23	[17]	142	83	162	[1]	245	66	496	562
08:00	17	35	[42]	52	67	17	[19]	84	33	74	[0]	107	61	243	304
08:15	20	35	[31]	55	69	28	[20]	97	33	87	[1]	120	52	272	324
08:30	24	34	[59]	58	56	20	[51]	76	42	114	[0]	156	110	290	400
08:45	31	41	[60]	72	66	16	[63]	82	37	93	[1]	130	124	284	408
Total	92	145	[192]	237	258	81	[153]	339	145	368	[2]	513	347	1089	1436
09:00	36	30	[47]	66	71	14	[46]	85	34	118	[2]	152	95	303	398
09:15	25	30	[52]	55	47	17	[36]	64	42	99	[0]	141	88	260	348
Grand Total	186	281	[339]	467	495	135	[252]	630	304	747	[5]	1051	596	2148	2744
Apprch \%	39.8	60.2			78.6	21.4			28.9	71.1					
Total \%	8.7	13.1		21.7	23	6.3		29.3	14.2	34.8		48.9	21.7	78.3	
Cars/lights	168	244		751	427	123		799	282	672		959	0	0	2509
\% Cars/lights	90.3	86.8	100	93.2	86.3	91.1	98.8	90.6	92.8	90	100	90.8	0	0	91.4
Trucks	17	13		30	21	12		36	22	20		42	0	0	108
\% Trucks	9.1	4.6	0	3.7	4.2	8.9	1.2	4.1	7.2	2.7	0	4	0	0	3.9
Buses	1	24		25	47	0		47	0	55		55	0	0	127
\% Buses	0.5	8.5	0	3.1	9.5	0	0	5.3	0	7.4	0	5.2	0	0	4.6

LEA Consulting Ltd.

625 Cochrane Drive, $9^{\text {th }}$ Floor
M arkham, ON L3R 9R9

File Name : Lansdowne Ave \& Queen St W - AM
Site Code : 00023322
Start Date : 2023-02-07
Page No : 2

LEA Consulting Ltd.

625 Cochrane Drive, $9^{\text {th }}$ Floor
 M arkham, ON L3R 9R9

File Name : Lansdowne Ave \& Queen St W - AM
Site Code : 00023322
Start Date : 2023-02-07
Page No : 3

	Lansdowne Avenue Southbound			Queen Street West Westbound			Queen Street West Eastbound			
Start Time	Left	Right	App. Total	Thru	Right	App. Total	Left	Thru	App. Total	Int. Total
Peak Hour Analysis From 07:30 to 09:15-Peak 1 of 1										
Peak Hour for Entire Int	on Beg	t 08:15								
08:15	20	35	55	69	28	97	33	87	120	272
08:30	24	34	58	56	20	76	42	114	156	290
08:45	31	41	72	66	16	82	37	93	130	284
09:00	36	30	66	71	14	85	34	118	152	303
Total Volume	111	140	251	262	78	340	146	412	558	1149
\% App. Total	44.2	55.8		77.1	22.9		26.2	73.8		
PHF	. 771	. 854	. 872	. 923	. 696	. 876	. 869	. 873	. 894	. 948
Cars/lights	103	122	225	226	72	298	136	375	511	1034
\% Cars/lights	92.8	87.1	89.6	86.3	92.3	87.6	93.2	91.0	91.6	90.0
Trucks	8	7	15	11	6	17	10	10	20	52
\% Trucks	7.2	5.0	6.0	4.2	7.7	5.0	6.8	2.4	3.6	4.5
Buses	0	11	11	25	0	25	0	27	27	63
\% Buses	0	7.9	4.4	9.5	0	7.4	0	6.6	4.8	5.5

LEA Consulting Ltd.

625 Cochrane Drive, $9^{\text {th }}$ Floor M arkham, ON L3R 9R9

LEA Consulting Ltd.

625 Cochrane Drive, $9^{\text {th }}$ Floor
M arkham, ON L3R 9R9

Project No.: 23322
Intersection: Lansdowne Ave \& Queen St
Weather: Clear
Surveyor(s): ID

File Name : Lansdowne Ave \& Queen St W - PM
Site Code : 00023322
Start Date : 2023-02-07
Page No : 1

Groups Printed- Cars/lights - Trucks - Buses

	Lansdowne Avenue Southbound				Queen Street West Westbound				Queen Street West Eastbound						
Start Time	Left	Right	Peds	App. Total	Thru	Right	Peds	App. Total	Left	Thru	Peds	App. Total	Exclu. Total	Inclu. Total	Int. Total
16:30	24	47	[83]	71	97	17	[45]	114	57	64	[1]	121	129	306	435
16:45	27	26	[76]	53	94	19	[40]	113	48	71	[2]	119	118	285	403
Total	51	73	[159]	124	191	36	[85]	227	105	135	[3]	240	247	591	838
17:00	26	36	[108]	62	64	16	[46]	80	52	47	[2]	99	156	241	397
17:15	23	33	[80]	56	91	23	[42]	114	57	71	[1]	128	123	298	421
17:30	25	43	[107]	68	83	19	[51]	102	48	82	[3]	130	161	300	461
17:45	14	41	[88]	55	113	16	[46]	129	43	84	[2]	127	136	311	447
Total	88	153	[383]	241	351	74	[185]	425	200	284	[8]	484	576	1150	1726
18:00	25	42	[65]	67	82	20	[51]	102	48	96	[4]	144	120	313	433
18:15	29	39	[71]	68	80	9	[46]	89	53	47	[1]	100	118	257	375
Grand Total	193	307	[678]	500	704	139	[367]	843	406	562	[16]	968	1061	2311	3372
Apprch \%	38.6	61.4			83.5	16.5			41.9	58.1					
Total \%	8.4	13.3		21.6	30.5	6		36.5	17.6	24.3		41.9	31.5	68.5	
Cars/lights	188	278		1138	653	134		1120	395	527		935	0	0	3193
\% Cars/lights	97.4	90.6	99.1	96.6	92.8	96.4	90.7	92.6	97.3	93.8	81.2	95	0	0	94.7
Trucks	5	9		20	14	5		53	11	0		14	0	0	87
\% Trucks	2.6	2.9	0.9	1.7	2	3.6	9.3	4.4	2.7	0	18.8	1.4	0	0	2.6
Buses	0	20		20	37	0		37	0	35		35	0	0	92
\% Buses	0	6.5	0	1.7	5.3	0	0	3.1	0	6.2	0	3.6	0	0	2.7

LEA Consulting Ltd.

625 Cochrane Drive, $9^{\text {th }}$ Floor
M arkham, ON L3R 9R9

File Name : Lansdowne Ave \& Queen St W - PM
Site Code : 00023322
Start Date : 2023-02-07
Page No : 2

LEA Consulting Ltd.

625 Cochrane Drive, $9^{\text {th }}$ Floor
 M arkham, ON L3R 9R9

File Name : Lansdowne Ave \& Queen St W - PM
Site Code : 00023322
Start Date : 2023-02-07
Page No : 3

	Lansdowne Avenue Southbound			Queen Street West Westbound			Queen Street West Eastbound			
Start Time	Left	Right	App. Total	Thru	Right	App. Total	Left	Thru	App. Total	Int. Total
Peak Hour Analysis From 16:30 to 18:15-Peak 1 of 1										
Peak Hour for Entire Intersection Begins at 17:15										
17:15	23	33	56	91	23	114	57	71	128	298
17:30	25	43	68	83	19	102	48	82	130	300
17:45	14	41	55	113	16	129	43	84	127	311
18:00	25	42	67	82	20	102	48	96	144	313
Total Volume	87	159	246	369	78	447	196	333	529	1222
\% App. Total	35.4	64.6		82.6	17.4		37.1	62.9		
PHF	. 870	. 924	. 904	. 816	. 848	. 866	. 860	. 867	. 918	. 976
Cars/lights	85	146	231	347	77	424	192	317	509	1164
\% Cars/lights	97.7	91.8	93.9	94.0	98.7	94.9	98.0	95.2	96.2	95.3
Trucks	2	4	6	5	1	6	4	0	4	16
\% Trucks	2.3	2.5	2.4	1.4	1.3	1.3	2.0	0	0.8	1.3
Buses	0	9	9	17	0	17	0	16	16	42
\% Buses	0	5.7	3.7	4.6	0	3.8	0	4.8	3.0	3.4

LEA Consulting Ltd.

625 Cochrane Drive, $9^{\text {th }}$ Floor M arkham, ON L3R 9R9

LEA Consulting Ltd.

625 Cochrane Drive, $9^{\text {th }}$ Floor
M arkham, ON L3R 9R9

Project No.: 23322
Intersection: Macdonnell Ave \& Queen St Weather: Clear Surveyor(s): ID

File Name : RAW_Macdonnel Ave \& Queen St W - AM
Site Code : 00023322
Start Date : 2023-02-07
Page No : 1

Groups Printed- Cars/lights - Trucks - Buses

	Macdonnell Avenue Southbound					Queen Street West Westbound					1441 Queen Street West Northbound					Queen Street West Eastbound					Exclu.Total	Inclu. Toal	Int. Toal
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Toal			
07:30	7	0	11	$[23$ $]$	18	0	50	7	[4]	57	0	0	1	[10]	1	7	93	0	[2]	100	39	176	215
07:45	7	1	6	$\begin{array}{r} {[21} \\ \\ \hline \end{array}$	14	1	50	6	[1]	57	0	0	0	$[15$	0	14	73	0	[2]	87	39	158	197
Total	14	1	17	$[44$ $]$	32	1	100	13	[5]	114	0	0	1	$[25$ $]$	1	21	166	0	[4]	187	78	334	412
08:00	10	0	8	$[19$ $]$	18	0	58	3	[1]	61	0	0	0	$[13$ $]$	0	13	73	0	[4]	86	37	165	202
08:15	5	1	8	$[24$ $]$	14	0	61	4	[0]	65	1	1	1	$[14$ $]$	3	7	76	3	[3]	86	41	168	209
08:30	6	0	16	$[57$ $]$	22	0	47	9	[1]	56	0	0	0	$[27$ $]$	0	23	107	1	[2]	131	87	209	296
08:45	7	0	12	$[49$	19	0	65	5	[5]	70	0	0	0	$\begin{array}{r}{[16} \\ \hline\end{array}$	0	14	83	1	[3]	98	73	187	260
Total	28	1	44	$\begin{gathered} {[\{\backslash f} \\ \text { s1 } \\ 5 \\ 14 \\ 9\}] \end{gathered}$	73	0	231	21	[7]	252	1	1	1	$[70$ $]$	3	57	339	5	$[12$ $]$	401	238	729	967
09:00	7	0	9	$[44$ $]$	16	1	66	7	[2]	74	0	1	1	$[27$ $]$	2	15	110	0	[6]	125	79	217	296
09:15	8	0			29	1	55	3	[3]	59	0	0	2		2	11	94	0	[2]	105	57	195	252
Grand Total	57	2	91	$\begin{gathered} {[\{\backslash f} \\ \text { s1 } \\ 5 \\ 26 \\ 1\}] \end{gathered}$	150	3	452	44	$[17$ $]$	499	1	2	5	$\begin{gathered} {[\{\backslash f} \\ \text { s1 } \\ 5 \\ 15 \\ 0\}] \end{gathered}$	8	104	709	5	$\begin{array}{r} {[24} \\] \end{array}$	818	452	1475	1927
Apprch \%	38	1.3	60.7			0.6	90.6	8.8			12.5	25	62.5			12.7	86.7	0.6					
Total \%	3.9	0.1	6.2		10.2	0.2	30.6	3		33.8	0.1	0.1	0.3		0.5	7.1	48.1	0.3		55.5	23.5	76.5	
Cars/lights	56	2	86		405	3	398	19		430	1	2	4		157	100	630	5		752	0		1744
\% Cars/lights	98.2	100	94.5	100	98.5	100	88.1	43.2	58.8	83.3	100	100	80	100	99.4	96.2	88.9	100	70.8	89.3	0	0	90.5
Trucks	1	0	5		6	0	14	1		22	0	0	1		1	4	34	0		45	0	0	74
\% Trucks	1.8	0	5.5	0	1.5	0	3.1	2.3	41.2	4.3	0	0	20	0	0.6	3.8	4.8	0	29.2	5.3	0	0	3.8
Buses	0	0	0		0	0	40	24		64	0	0	0		0	0	45	0		45	0	0	109
\% Buses	0	0	0	0	0	0	8.8	54.5	0	12.4	0	0	0	0	0	0	6.3	0	0	5.3	0	0	5.7

LEA Consulting Ltd.

625 Cochrane Drive, $9^{\text {th }}$ Floor
M arkham, ON L3R 9R9

File Name : RAW_Macdonnel Ave \& Queen St W - AM
Site Code : 00023322
Start Date : 2023-02-07
Page No : 2

LEA Consulting Ltd.

625 Cochrane Drive, $9^{\text {th }}$ Floor
 M arkham, ON L3R 9R9

File Name : RAW_Macdonnel Ave \& Queen St W - AM
Site Code : 00023322
Start Date : 2023-02-07
Page No : 3

	Macdonnell Avenue Southbound				Queen Street West Westbound				1441 Queen Street West Northbound				Queen Street West Eastbound				
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total

Peak Hour Analysis From 07:30 to 09:15 - Peak 1 of 1
Peak Hour for Entire Intersection Begins at 08:30

08:30	6	0	16	22	0	47	9	56	0	0	0	0	23	107	1	131	209
08:45	7	0	12	19	0	65	5	70	0	0	0	0	14	83	1	98	187
09:00	7	0	9	16	1	66	7	74	0	1	1	2	15	110	0	125	217
09:15	8	0	21	29	1	55	3	59	0	0	2	2	11	94	0	105	195
Total Volume	28	0	58	86	2	233	24	259	0	1	3	4	63	394	2	459	808
\% App. Total	32.6	0	67.4		0.8	90	9.3		0	25	75		13.7	85.8	0.4		
PHF	. 875	. 000	. 690	. 741	. 500	. 883	. 667	. 875	. 000	250	. 375	. 500	. 685	. 895	. 500	. 876	. 931
Cars/lights	28	0	56	84	2	204	13	219	0	1	2	3	59	347	2	408	714
\% Cars/lights	100	0	96.6	97.7	100	87.6	54.2	84.6	0	100	66.7	75.0	93.7	88.1	100	88.9	88.4
Trucks	0	0	2	2	0	10	0	10	0	0	1	1	4	22	0	26	39
\% Trucks	0	0	3.4	2.3	0	4.3	0	3.9	0	0	33.3	25.0	6.3	5.6	0	5.7	4.8
Buses	0	0	0	0	0	19	11	30	0	0	0	0	0	25	0	25	55
\% Buses	0	0	0	0	0	8.2	45.8	11.6	0	0	0	0	0	6.3	0	5.4	6.8

LEA Consulting Ltd.

625 Cochrane Drive, $9^{\text {th }}$ Floor M arkham, ON L3R 9R9

LEA Consulting Ltd.

625 Cochrane Drive, $9^{\text {th }}$ Floor
M arkham, ON L3R 9R9

Project No.: 23322
Intersection: Macdonnell Ave \& Queen St Weather: Clear Surveyor(s): ID

File Name : RAW_Macdonnel Ave \& Queen St W - PM
Site Code : 00023322
Start Date : 2023-02-07
Page No : 1

Groups Printed- Cars/lights - Trucks - Buses

	Macdonnell Avenue Southbound					Queen Street West Westbound					1441 Queen Street West Northbound					Queen Street West Eastbound							
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Toal	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Toal	Exclu Toald	Inclu. Tooal	Int. Toal
16:30	5	0	16		21	2	111	6	[0]	119	0	0	2	$[37$ $]$	2	10	73	0	[5]	83	99	225	324
16:45	7	0	17	[62	24	2	101	8	[4]	111	0	1	5	$\begin{array}{r} {[29} \\ \\ \hline \end{array}$	6	8	58	0	[14	66	109	207	316
Total	12	0	33	$\begin{gathered} {[\{\backslash f} \\ \text { s1 } \\ 5 \\ 11 \\ 9\}] \end{gathered}$	45	4	212	14	[4]	230	0	1	7	$[66$ $]$	8	18	131	0	$[19$ $]$	149	208	432	640
17:00	4	0	21	$[60$ $]$	25	1	77	6	[4]	84	1	0	0	$[45$ $]$	1	11	51	0	$[10$ $]$	62	119	172	291
17:15	2	0	22	$[81$ $]$	24	1	102	8	[3]	111	2	2	1	$[46$ $]$	5	22	61	2	[6]	85	136	225	361
17:30	4	0	28	$[67$ $]$	32	2	101	7	[5]	110	0	0	4	$\begin{array}{r} {[43} \\] \end{array}$	4	11	63	2	[9]	76	124	222	346
17:45	4	0	28	[69	32	2	113	7	[5]	122	2	2	0	$\begin{array}{r} {[59} \\] \end{array}$	4	19	74	0	[3]	93	136	251	387
Total	14	0	99	$\begin{array}{r} {[\{\backslash} \\ \text { s1 } \\ 5 \\ 27 \\ 7\}] \end{array}$	113	6	393	28	$[17$ $]$	427	5	4	5	$[\{1$ s1 5 19 $3\}]$	14	63	249	4	$[28$ $]$	316	515	870	1385

18:00	0	0	17	$[49$ $]$	17	1	88	9	[2]	98	1	0	0	$[50$ $]$	1	22	90	1	[12	113	113	229	342
18:15	6	0	21	$[61$ $]$	27	1	87	8	$[11$ $]$	96	0	0		$[56$ $]$	4	16	65	1	$[12$ $]$	82	140	209	349
Grand Total	32	0	170	$\begin{gathered} \text { [\{\f } \\ \text { s1 } \\ 5 \\ 50 \\ 6\}] \end{gathered}$	202	12	780	59	[34]	851	6	5	16	$\begin{gathered} {[\{\backslash f} \\ \text { s1 } \\ 5 \\ 36 \\ 5\}] \end{gathered}$	27	119	535	6	[71	660	976	1740	2716
Apprch \%	15.8	0	84.2			1.4	91.7	6.9			22.2	18.5	59.3			18	81.1	0.9					
Total \%	1.8	0	9.8		11.6	0.7	44.8	3.4		48.9	0.3	0.3	0.9		1.6	6.8	30.7	0.3		37.9	35.9	64.1	
Cars/lights	31	0	166		703	12	725	39		785	6	5	16		392	118	495	6		674	0	0	2554
\% Cars/lights	96.9	0	97.6	100	99.3	100	92.9	66.1	26.5	88.7	100	100	100	100	100	99.2	92.5	100	77.5	92.2	0	0	94
Trucks	1	0	4		5	0	18	0		43	0	0	0		0	1	5	0		22	0	0	70
\% Trucks	3.1	0	2.4	0	0.7	0	2.3	0	73.5	4.9	0	0	0	0	0	0.8	0.9	0	22.5	3	0	0	2.6
Buses	0	0	0		0	0	37	20		57	0	0	0		0	0	35	0		35	0	0	92
\% Buses	0	0	0	0	0	0	4.7	33.9	0	6.4	0	0	0	0	0	0	6.5	0	0	4.8	0	0	3.4

LEA Consulting Ltd.

625 Cochrane Drive, $9^{\text {th }}$ Floor
M arkham, ON L3R 9R9

File Name : RAW_Macdonnel Ave \& Queen St W - PM
Site Code : 00023322
Start Date : 2023-02-07
Page No : 2

LEA Consulting Ltd.

625 Cochrane Drive, $9^{\text {th }}$ Floor
 M arkham, ON L3R 9R9

File Name : RAW_Macdonnel Ave \& Queen St W - PM
Site Code : 00023322
Start Date : 2023-02-07
Page No : 3

	Macdonnell Avenue Southbound				Queen Street West Westbound				1441 Queen Street West Northbound				Queen Street West Eastbound				
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total

Peak Hour Analysis From 16:30 to 18:15-Peak 1 of 1
Peak Hour for Entire Intersection Begins at 17:15

ou	,	ection	Beg	17:													
17:15	2	0	22	24	1	102	8	111	2	2	1	5	22	61	2	85	225
17:30	4	0	28	32	2	101	7	110	0	0	4	4	11	63	2	76	222
17:45	4	0	28	32	2	113	7	122	2	2	0	4	19	74	0	93	251
18:00	0	0	17	17	1	88	9	98	1	0	0	1	22	90	1	113	229
Total Volume	10	0	95	105	6	404	31	441	5	4	5	14	74	288	5	367	927
\% App. Total	9.5	0	90.5		1.4	91.6	7		35.7	28.6	35.7		20.2	78.5	1.4		
PHF	. 625	. 000	. 848	. 820	. 750	. 894	. 861	. 904	. 625	. 500	. 313	. 700	. 841	. 800	. 625	. 812	. 923
Cars/lights	9	0	92	101	6	380	22	408	5	4	5	14	74	271	5	350	873
\% Cars/lights	90.0	0	96.8	96.2	100	94.1	71.0	92.5	100	100	100	100	100	94.1	100	95.4	94.2
Trucks	1	0	3	4	0	7	0	7	0	0	0	0	0	1	0	1	12
\% Trucks	10.0	0	3.2	3.8	0	1.7	0	1.6	0	0	0	0	0	0.3	0	0.3	1.3
Buses	0	0	0	0	0	17	9	26	0	0	0	0	0	16	0	16	42
\% Buses	0	0	0	0	0	4.2	29.0	5.9	0	0	0	0	0	5.6	0	4.4	4.5

LEA Consulting Ltd.

625 Cochrane Drive, $9^{\text {th }}$ Floor M arkham, ON L3R 9R9

LEA

EA Consulting Ltd 625 Cochrane Drive

Markam, Ontario, Canada L3R 9R9
Markam, Ontario, Canada L3R 9R9
$905-470-0015 \times 240$ idinsmore@lea.ca

Turning Movement Data

LEA Consulting Ltd 625 Cochrane Drive

Markam, Ontario, Canada L3R 9R9 905-470-0015 x240 idinsmore@lea.ca

Turning Movement Data Plot

EA

EA Consulting Ltd 625 Cochrane Drive

Markam, Ontario, Canada L3R 9R9 Markam, Ontario, Canada L3R 9 ar9
$905-470-0015 \times 240$ idinsmore@lea.ca

Turning Movement Peak Hour Data (8:30 AM)

Start Time	Sorauren Avenue Southbound							Ho	a	AMI)	Queen Street West Eastbound					Int. Total
						Queen Street West Westbound										
	Right	Left	U-Turn	Peds	App. Total	Right	Thru	U-Turn	Peds	App. Total	Thru	Left	U-Turn	Peds	App. Total	
8:30 AM	3	9	0	22	12	7	52	1	21	60	117	26	0	10	143	215
8:45 AM	4	14	0	12	18	21	55	0	8	76	128	34	0	12	162	256
9:00 AM	9	22	0	12	31	24	43	0	12	67	144	26	0	10	170	268
9:15 AM	4	11	0	9	15	22	50	0	7	72	113	30	0	2	143	230
Total	20	56	0	55	76	74	200	1	48	275	502	116	0	34	618	969
Approach \%	26.3	73.7	0.0	-	-	26.9	72.7	0.4	-	-	81.2	18.8	0.0	-	-	-
Total \%	2.1	5.8	0.0	-	7.8	7.6	20.6	0.1	-	28.4	51.8	12.0	0.0	-	63.8	-
PHF	0.556	0.636	0.000	-	0.613	0.771	0.909	0.250	-	0.905	0.872	0.853	0.000	-	0.909	0.904
Lights	20	51	0	-	71	66	174	1	-	241	443	110	0	-	553	865
\% Lights	100.0	91.1	-	-	93.4	89.2	87.0	100.0	-	87.6	88.2	94.8	-	-	89.5	89.3
Buses	0	1	0	-	1	0	18	0	-	18	25	2	0	-	27	46
\% Buses	0.0	1.8	-	-	1.3	0.0	9.0	0.0	-	6.5	5.0	1.7	-	-	4.4	4.7
Trucks	0	1	0	-	1	6	5	0	-	11	25	2	0	-	27	39
\% Trucks	0.0	1.8	-	-	1.3	8.1	2.5	0.0	-	4.0	5.0	1.7	-	-	4.4	4.0
Bicycles on Road	0	3	0	-	3	2	3	0	-	5	9	2	0	-	11	19
\% Bicycles on Road	0.0	5.4	-	-	3.9	2.7	1.5	0.0	-	1.8	1.8	1.7	-	-	1.8	2.0
Bicycles on Crosswalk	-	-	-	0	-	-	-	-	1	-	-	-	-	2	-	-
\% Bicycles on Crosswalk	-	-	-	0.0	-	-	-	-	2.1	-	-	-	-	5.9	-	-
Pedestrians	-	-	-	55	-	-	-	-	47	-	-	-	-	32	-	-
\% Pedestrians	-	-	-	100.0	-	-	-	-	97.9	-	-	-	-	94.1	-	-

LEA Consulting Ltd

Turning Movement Peak Hour Data Plot (8:30 AM)

LEA

LEA Consulting Ltd 625 Cochrane Drive

Markam, Ontario, Canada L3R 9R9
Markam, Ontario, Canada L3R 9R9
$905-470-0015 \times 240$ idinsmore@lea.ca

Turning Movement Data

LEA Consulting Ltd 625 Cochrane Drive

Markam, Ontario, Canada L3R 9R9 905-470-0015 x240 idinsmore@lea.ca

Turning Movement Data Plot

EA

EA Consulting Ltd 625 Cochrane Drive

Markam, Ontario, Canada L3R 9R9 905-470-0015 x240 idinsmore@lea.ca

Turning Movement Peak Hour Data (5:15 PM)

LEA Consulting Ltd

Turning Movement Peak Hour Data Plot (5:15 PM)

Lane Utilization Factor with Streetcar Operations

```
M Intersecion:
                Muen stw & lameson Ave
```



```
\:*)
```


Queen Street West \& Jameson Avenue Northbound Right Calibration Check

NBR at Queen St W and Jameson Ave indicates v/c ratio over 1.00 for PM with default synchro model parameters. The following
work of reviewing video footage for the PM peak 15 -minute period was done to get an idea of appropriate model calibration.

Intersection:	Queen St W \& Jameson Ave
Movement of focus:	NBR
Weekday PM Peak Hour:	5:15-6:15 PM
PM Peak 15-min:	5:45-6:00 PM

From video footage for PM peak 15-min:

Cycle	NBR Volume	Note: queue at onset of red?
1	9	N
2	7	Y
3	6	Y
4	9	Y
5	5	Y
6	6	Y
7	8	Y
8	7	Y
9	8	Y
TOTAL	$\mathbf{6 5}$	

For NBR capacity per cycle, assumed 8 vehicles rather than 9 vehicles to be conservative.

APPENDIX C

Queue Survey

22332
Queen St \& Macdonell Ave EBL
2023-02-07
JC
AM Peak

Queue	Time Start	Time End	Duration	\# of Cars in LT Queue	Courtesy	Notes
1	7:31:09	7:31:12	0:00:03	0		
2	7:36:06	7:36:16	0:00:10	0		
3	7:37:40	7:38:11	0:00:31	0		
4	7:41:08	7:41:12	0:00:04	1		
5	7:41:11	7:41:14	0:00:03	0		
6	7:43:12	7:43:20	0:00:08	0		
7	7:44:36	7:44:48	0:00:12	0		
8	7:45:26	7:45:29	0:00:03	0		
9	7:46:01	7:46:03	0:00:02	0		
10	7:46:47	7:46:51	0:00:04	0		
11	7:49:34	7:49:50	0:00:16	1		
12	7:49:45	7:50:05	0:00:20	1		
13	7:49:56	7:50:08	0:00:12	0		
14	7:50:47	7:51:01	0:00:14	0		
15	7:53:01	7:53:04	0:00:03	0		
16	7:53:08	7:53:14	0:00:06	0		
17	7:54:38	7:54:42	0:00:04	3		
18	7:54:44	7:54:50	0:00:06	2		
19	7:54:54	7:54:58	0:00:04	1		
20	7:55:00	7:55:06	0:00:06	0		
21	7:56:59	7:57:39	0:00:40	0		
22	7:59:57	8:00:03	0:00:06	0		
23	8:01:09	8:01:13	0:00:04	0		
24	8:02:35	8:02:48	0:00:13	0		
25	8:04:55	8:04:58	0:00:03	0		
26	8:05:20	8:05:24	0:00:04	0		
27	8:06:59	8:07:03	0:00:04	0		
28	8:07:18	8:07:20	0:00:02	0		
29	8:08:19	8:08:37	0:00:18	1		
30	8:08:39	8:08:44	0:00:05	0		
31	8:08:55	8:09:04	0:00:09	0		
32	8:09:03	8:09:11	0:00:08	0		
33	8:10:23	8:10:27	0:00:04	0		
34	8:11:26	8:11:33	0:00:07	0		
35	8:11:43	8:11:48	0:00:05	0		
36	8:17:10	8:17:13	0:00:03	0		
37	8:18:16	8:18:20	0:00:04	0		
38	8:19:14	8:19:19	0:00:05	0		
39	8:20:33	8:20:38	0:00:05	0		
40	8:20:55	8:21:07	0:00:12	0		
41	8:22:01	8:22:16	0:00:15	1		

42	8:22:10	8:22:19	0:00:09	0	
43	8:23:17	8:23:21	0:00:04	0	
44	8:30:33	8:30:44	0:00:11	1	
45	8:30:56	8:30:59	0:00:03	0	
46	8:31:04	8:31:13	0:00:09	0	
47	8:33:57	8:34:01	0:00:04	0	
48	8:35:36	8:35:40	0:00:04	0	
49	8:37:08	8:37:17	0:00:09	1	
50	8:37:15	8:37:20	0:00:05	0	
51	8:37:37	8:37:46	0:00:09	0	
52	8:39:00	8:39:07	0:00:07	1	
53	8:39:07	8:39:11	0:00:04	0	
54	8:39:15	8:39:21	0:00:06	1	
55	8:39:16	8:39:23	0:00:07	0	
56	8:39:34	8:39:38	0:00:04	0	
57	8:39:45	8:39:48	0:00:03	1	
58	8:39:48	8:39:51	0:00:03	0	
59	8:40:44	8:40:53	0:00:09	0	
60	8:40:59	8:41:02	0:00:03	0	
61	8:42:01	8:42:04	0:00:03	0	
62	8:42:09	8:42:27	0:00:18	1	
63	8:42:17	8:42:30	0:00:13	0	
64	8:43:04	8:43:13	0:00:09	0	
65	8:43:56	8:44:07	0:00:11	1	
66	8:44:01	8:44:10	0:00:09	0	
67	8:45:40	8:45:42	0:00:02	0	
68	8:46:00	8:46:07	0:00:07	0	
69	8:46:25	8:46:33	0:00:08	0	
70	8:51:02	8:51:07	0:00:05	1	
71	8:51:05	8:51:09	0:00:04	0	
72	8:51:51	8:51:58	0:00:07	0	
73	8:52:31	8:52:35	0:00:04	0	
74	8:54:10	8:54:28	0:00:18	1	
75	8:54:34	8:54:37	0:00:03	0	
76	8:54:44	8:54:55	0:00:11	1	
77	8:54:45	8:54:57	0:00:12	0	
78	8:55:54	8:56:03	0:00:09	2	
79	8:55:59	8:56:21	0:00:22	1	
80	8:56:00	8:56:25	0:00:25	0	
81	9:01:30	9:01:38	0:00:08	0	
82	9:01:45	9:01:49	0:00:04	0	
83	9:02:44	9:03:06	0:00:22	3	
84	9:03:02	9:03:09	0:00:07	2	
85	9:03:09	9:03:12	0:00:03	1	
86	9:03:09	9:03:13	0:00:04	0	
87	9:04:27	9:04:32	0:00:05	1	
88	9:04:32	9:04:36	0:00:04	0	

89	$9: 06: 15$	$9: 06: 22$	$0: 00: 07$	0	
90	$9: 06: 27$	$9: 06: 37$	$0: 00: 10$	0	
91	$9: 07: 54$	$9: 07: 57$	$0: 00: 03$	1	
92	$9: 07: 58$	$9: 08: 00$	$0: 00: 02$	0	
93	$9: 08: 13$	$9: 08: 16$	$0: 00: 03$	0	
94	$9: 09: 35$	$9: 09: 39$	$0: 00: 04$	1	
95	$9: 09: 41$	$9: 09: 45$	$0: 00: 04$	0	
96	$9: 14: 39$	$9: 14: 43$	$0: 00: 04$	0	
97	$9: 16: 23$	$9: 16: 31$	$0: 00: 08$	0	
98	$9: 18: 06$	$9: 18: 15$	$0: 00: 09$	2	
99	$9: 18: 13$	$9: 18: 25$	$0: 00: 12$	1	
100	$9: 18: 25$	$9: 18: 29$	$0: 00: 04$	0	
101	$9: 21: 21$	$9: 21: 25$	$0: 00: 04$	0	
102	$9: 21: 38$	$9: 21: 42$	$0: 00: 04$	0	
103	$9: 21: 45$	$9: 21: 50$	$0: 00: 05$	0	
104	$9: 26: 28$	$9: 26: 31$	$0: 00: 03$	1	
105	$9: 26: 30$	$9: 26: 35$	$0: 00: 05$	0	
106	$9: 26: 38$	$9: 26: 41$	$0: 00: 03$	0	
107	$9: 29: 58$	$9: 30: 02$	$0: 00: 04$	0	

PM Peak

Queue	Time Start	Time End	Duration	\# of Cars in LT Queue	SB Courtesy
1	$4: 30: 48$	$4: 31: 04$	$0: 00: 16$	0	
2	$4: 32: 23$	$4: 32: 42$	$0: 00: 19$	0	
3	$4: 37: 39$	$4: 37: 43$	$0: 00: 04$	4	
4	$4: 37: 43$	$4: 37: 55$	$0: 00: 12$	3	
5	$4: 37: 53$	$4: 37: 58$	$0: 00: 05$	2	
6	$4: 37: 59$	$4: 38: 04$	$0: 00: 05$	1	
7	$4: 38: 02$	$4: 38: 05$	$0: 00: 03$	0	
8	$4: 44: 38$	$4: 44: 43$	$0: 00: 05$	1	
9	$4: 44: 43$	$4: 44: 47$	$0: 00: 04$	0	
10	$4: 45: 00$	$4: 45: 03$	$0: 00: 03$	0	
11	$4: 46: 11$	$4: 46: 19$	$0: 00: 08$	0	
12	$4: 46: 41$	$4: 46: 55$	$0: 00: 14$	0	
13	$4: 49: 33$	$4: 49: 37$	$0: 00: 04$	0	
14	$4: 51: 13$	$4: 51: 36$	$0: 00: 23$	2	
15	$4: 51: 14$	$4: 51: 38$	$0: 00: 24$	1	
16	$4: 51: 42$	$4: 51: 58$	$0: 00: 16$	0	
17	$4: 53: 00$	$4: 53: 07$	$0: 00: 07$	0	
18	$4: 54: 36$	$4: 55: 07$	$0: 00: 31$	0	
19	$4: 56: 38$	$4: 56: 41$	$0: 00: 03$	0	
20	$5: 01: 26$	$5: 01: 31$	$0: 00: 05$	0	
21	$5: 01: 51$	$5: 01: 54$	$0: 00: 03$	0	
22	$5: 03: 21$	$5: 03: 49$	$0: 00: 28$	0	
23	$5: 06: 12$	$5: 06: 19$	$0: 00: 07$	0	
24	$5: 08: 15$	$5: 08: 24$	$0: 00: 09$	0	
		0	0		

25	5:08:29	5:08:34	0:00:05	0	
26	5:12:01	5:12:08	0:00:07	0	
27	5:13:22	5:13:35	0:00:13	2	
28	5:13:35	5:13:40	0:00:05	1	
29	5:13:45	5:13:50	0:00:05	0	
30	5:14:50	5:14:54	0:00:04	0	
31	5:17:02	5:17:06	0:00:04	0	
32	5:17:21	5:17:26	0:00:05	0	
33	5:17:28	5:17:31	0:00:03	1	
34	5:17:29	5:17:36	0:00:07	0	
35	5:18:05	5:18:10	0:00:05	0	
36	5:18:28	5:18:33	0:00:05	0	
37	5:18:59	5:19:04	0:00:05	0	
38	5:20:12	5:20:19	0:00:07	1	
39	5:20:17	5:20:28	0:00:11	0	
40	5:22:28	5:22:34	0:00:06	0	
41	5:23:34	5:23:40	0:00:06	3	
42	5:23:39	5:23:47	0:00:08	2	
43	5:23:50	5:24:01	0:00:11	1	
44	5:24:01	5:24:05	0:00:04	0	
45	5:24:10	5:24:20	0:00:10	0	
46	5:26:56	5:27:18	0:00:22	4	
47	5:26:57	5:27:24	0:00:27	3	
48	5:26:58	5:27:27	0:00:29	2	
49	5:27:27	5:27:47	0:00:20	1	
50	5:27:40	5:27:52	0:00:12	0	
51	5:28:04	5:28:13	0:00:09	1	
52	5:28:07	5:28:26	0:00:19	0	
53	5:29:26	5:29:43	0:00:17	0	
54	5:30:11	5:30:36	0:00:25	2	
55	5:30:12	5:30:39	0:00:27	1	
56	5:30:35	5:30:42	0:00:07	0	
57	5:34:05	5:34:16	0:00:11	1	
58	5:34:19	5:34:23	0:00:04	0	
59	5:34:50	5:34:58	0:00:08	1	
60	5:34:52	5:35:01	0:00:09	0	
61	5:37:15	5:37:24	0:00:09	0	
62	5:39:12	5:39:17	0:00:05	0	
63	5:40:55	5:41:04	0:00:09	0	
64	5:42:15	5:42:33	0:00:18	0	
65	5:46:47	5:46:54	0:00:07	1	
66	5:46:55	5:47:04	0:00:09	0	
67	5:47:25	5:47:42	0:00:17	0	
68	5:48:09	5:48:40	0:00:31	0	
69	5:50:31	5:50:34	0:00:03	0	
70	5:51:06	5:51:10	0:00:04	0	
71	5:51:14	5:51:17	0:00:03	1	

72	5:51:17	5:51:24	0:00:07	0	
73	5:52:26	5:52:34	0:00:08	2	
74	5:52:35	5:52:39	0:00:04	1	
75	5:52:38	5:52:42	0:00:04	0	
76	5:54:10	5:54:38	0:00:28	0	
77	5:55:48	5:56:05	0:00:17	0	
78	5:56:19	5:56:22	0:00:03	1	
79	5:56:22	5:56:26	0:00:04	0	
80	5:56:38	5:56:43	0:00:05	0	
81	5:57:29	5:57:32	0:00:03	0	
82	5:58:05	5:58:09	0:00:04	0	
83	5:58:37	5:58:47	0:00:10	1	
84	5:58:44	5:58:55	0:00:11	0	
85	5:59:42	5:59:50	0:00:08	0	
86	6:01:17	6:01:21	0:00:04	1	
87	6:01:23	6:01:27	0:00:04	0	
88	6:02:40	6:02:57	0:00:17	4	
89	6:02:41	6:03:00	0:00:19	3	
90	6:02:59	6:03:03	0:00:04	2	
91	6:03:00	6:03:08	0:00:08	1	
92	6:03:03	6:03:10	0:00:07	0	
93	6:03:20	6:03:25	0:00:05	2	
94	6:03:21	6:03:27	0:00:06	1	
95	6:03:26	6:03:31	0:00:05	0	
96	6:04:00	6:04:03	0:00:03	0	
97	6:04:37	6:04:44	0:00:07	0	
98	6:04:46	6:04:49	0:00:03	0	
99	6:05:06	6:05:11	0:00:05	0	
100	6:06:07	6:06:21	0:00:14	2	
101	6:06:08	6:06:25	0:00:17	1	
102	6:06:18	6:06:31	0:00:13	0	
103	6:07:38	6:07:54	0:00:16	0	
104	6:08:07	6:08:12	0:00:05	0	
105	6:08:35	6:08:40	0:00:05	0	
106	6:11:57	6:12:06	0:00:09	1	
107	6:11:58	6:12:08	0:00:10	0	
108	6:14:22	6:14:26	0:00:04	0	
109	6:15:36	6:15:47	0:00:11	0	
110	6:16:24	6:16:32	0:00:08	1	
111	6:16:31	6:16:37	0:00:06	0	
112	6:17:00	6:17:10	0:00:10	0	
113	6:19:52	6:19:59	0:00:07	0	
114	6:20:07	6:20:15	0:00:08	0	
115	6:21:01	6:21:04	0:00:03	0	
116	6:22:57	6:23:10	0:00:13	0	
117	6:25:06	6:25:15	0:00:09	0	
118	6:25:56	6:26:04	0:00:08	0	

119	$6: 27: 51$	$6: 27: 55$	$0: 00: 04$	0	
120	$6: 28: 08$	$6: 28: 34$	$0: 00: 26$	0	
121	$6: 29: 31$	$6: 29: 37$	$0: 00: 06$	1	
122	$6: 29: 45$	$6: 29: 53$	$0: 00: 08$	0	
123			$0: 00: 00$	0	
124			$0: 00: 00$	0	
125			$0: 00: 00$	0	

DATE OF SURVEY:
QUEUE ANALYSIS:

Tuesday, Feb 07, 2023
Eastbound - Queen St \& Jameson Ave

ONSET GREEN

APPENDIX D

Corridor Growth Calculations
ssumptions and Reasonings:
Ony EBPM shows notable gownh consistenty a t both locations. Remanining show ether neariby zero or negative growth.

APPENDIX E
Background Developments

9.0 TRAVEL DEMAND FORECAST

9.1 MULTI-MODAL TRIP GENERATION

BA Group had forecast multi-modal travel demand based on a "first principles" approach that derives travel demand from the expected occupancy of the development from a person trip making perspective. The 2016 TTS was used to establish the expected number of people to live in the proposed development after buildout and to derive a peak hour factor for trip making by these new residents over the peak period, assuming all residents will make at least one trip. Directional and mode split are then applied to the resultant peak hour person trips to forecast travel demand for each mode.

Multi-modal trip generation for the proposed development is summarized in Table 15. TTS queries for trip generation assumptions and the detailed calculations are provided in Appendix B and G, respectively.

Table 15 Trip Generation by First Principles

	Weekday Peak Hour Travel Characteristics					
Proposed Residential Units	78 units ${ }^{1}$					
Building Occupancy (Person)	Assume 100% of units occupied at any given time @ Unit occupancy of 1.72 people / unit ${ }^{2}$ 134 people					
Peak Travel Demand	Assume all residents make a trip sometime throughout the day: 34% of residents to travel during the AM peak hour ${ }^{3}$ 46 person trips during the AM peak hour 25% of residents to travel during the PM peak hour ${ }^{3}$ 33 person trips during the PM peak hour					
Inbound / Outbound	Assume inbound / outbound person-based trip distribution is consistent with inbound / outbound vehicle trip distribution					
Distribution ${ }^{4}$	Weekday Morning 26\% inbound / 74\% outbound			Weekday Afternoon 61\% inbound / 39\% outbound		
Person Trips	12	34	46	20	13	33
Effective Person Trip Rates	0.15	0.44	0.59	0.26	0.17	0.42
Multi-Modal Trips ${ }^{5}$						
Transit Driver Passenger Walk Cycle	$\begin{aligned} & 6 \\ & 0 \\ & 1 \\ & 4 \\ & 1 \end{aligned}$	$\begin{gathered} 17 \\ 0 \\ 0 \\ 13 \\ 4 \end{gathered}$	$\begin{gathered} 23 \\ 0 \\ 1 \\ 17 \\ 5 \end{gathered}$	$\begin{gathered} 10 \\ 0 \\ 1 \\ 7 \\ 2 \end{gathered}$	$\begin{aligned} & 7 \\ & 0 \\ & 0 \\ & 5 \\ & 1 \end{aligned}$	$\begin{gathered} 17 \\ 0 \\ 1 \\ 12 \\ 3 \end{gathered}$

Notes:

1. Based on site statistics provided by Core Architects Inc., dated November 6, 2019
2. Based on average household occupancy for mid/high rise in the Sorauren Avenue / Queen Street West area from 2016 TTS
3. Based on peak hour travel patterns of home-based trips by residents in the Sorauren Avenue / Queen Street West area from 2016 TTS, assuming all residents make at least one trips throughout the day
4. Based on directional splits for vehicle trips provided in the ITE Trip Generation Manual 10 Edition LUC 221.
5. Based on application of mode splits presented in Table 6.

Based on the foregoing, the proposed development will generate in the order of 45 and 35 two-way person trips during the weekday morning and afternoon peak hours, respectively. Vehicle based trips are negligible as expected from the provision of zero parking.

Trip making will be made primary via transit and walking. The proposed development will generate in the order of 23 and 17 two-way transit trips in addition to 17 and 12 two-way walking trips during the weekday morning and afternoon peak hours, respectively. This level of traffic activity is low, particularly for the walking and cycling modes, and will not noticeably change the operating conditions of the area active transportation network with respect to existing conditions.

FIGURE 5-1 NEW SITE TRAFFIC

LEA Consulting Ltd.

LEGEND
X Weekday AM Peak Hour Volumes
(X) Weekday PM Peak Hour Volumes

APPENDIX F

Detailed TTS Calculations

TAZ Used: 89, 109, 110, 113
Thu Mar 022023 16:04:28 GMT-0500 (Eastern Standard Time) - Run Time: 2604ms

Cross Tabulation Query Form - Trip - 2016 v1.1
Row: Type of dwelling unit - dwell type
Column: Primary travel mode of trip -mode_prime

Filters:
(2006 GTA zone of household - gta06_hhld In 89, 109, 110, 113
and
Trip purpose - trip_purp In 1,)

Trip 2016
Table:

	Transit excluding GO rail	Cycle	Auto driver	GO rail only	Joint GO rail and local transit	Motorcycle	Other	Auto passenger	Taxi passenger	Paid rideshare	Walk	Sum
House	1522	987	1695	9	0	24	0	180	59	0	580	5056
Apartment	12549	2409	7779	226	28	94	93	725	181	602	4083	28676
Townhouse	482	76	599	4	0	0	0	32	0	0	53	1246

Mode Split - Residential Trips			
Mode	Residential		
Auto Driver	27%		
Auto Passenger	5%		
Transit	45%		
Walk	14%		
Cycle	8%		
Total			$\mathbf{1 0 0 \%}$

Filters:
(2006 GTA zone of origin - gta06_orig $\ln 89,109,110,113$
and
antart tim
f trip-start time In 730-930
and
Trip pu
Trip purpose of origin - purp orig $\ln \mathrm{H}$
and
Primary travel mode of trip - mode_prime In D, M

Destination	Origin				Total to Destination	Trip Distribution		Trip Assignment					Res Out Detailed Summary		
	89	109	110	113		\%	Direction To	To North	To South	To East	To West	Predicted Route	Direction To	Predicted Route	\%
PD 1 of Toronto	492	43	185	68	788	23\%	E			23\%		Queen St W EB		Lansdowne Ave NB	1\%
89	86	0	0	0	86	3\%	E			3\%		Queen St W Eb	N	Queen St W EB	9\%
91	4	0	0	0	4	0\%	E			0\%		Queen St W EB		Queen St W WB	3\%
91 95	0	8	7	0	15	0\%	NE	0\%				Lansdowne Ave NB		Jameson Ave SB	3\%
95 97	0	6	0	0	6	0\%	NE	0\%				Lansdowne Ave NB		Lansdowne Ave NB	1\%
							ne			0\%		Queen St W Eb	NE	Queen St W EB	9\%
	0	15	0	0	15	0\%	E			0\%		Queen St W Eb		Jameson Ave SB	6\%
98 101	0	0	66	0	66	2\%	NE	2\%				Queen St W EB		King st W WB	1\%
101 105	76	0	0	0	76	2\%	N	2\%				Queen St W EB	NW	Queen St W EB	2\%
	0	0	6	0	6	0\%	N	0\%				Lansdowne Ave NB		Queen St W WB	2\%
107 108	0	18	0	0	18	1\%	N	1\%				Lansdowne Ave NB		Jameson Ave SB	5\%
109	0	0	16	0	16	0\%	NE	0\%				Lansdowne Ave NB	5	Jameson Ave SB	8\%
109	0	8	249	0	257	8\%	s		8\%			Jameson Ave SB	E	Queen St W EB	28\%
110 113	0	10	27	7	44	1\%	w				1\%	Queen St W WB		Jameson Ave SB	3\%
113 114	0	0	12	31	43	1\%	N	1\%				Queen St W WB		Queen St W EB	3\%
114115	27	0	0	12	39	1\%	NW	0\%				Queen St w wb	w	Queen St W WB	2\%
							nw				1\%	King St W WB		Jameson Ave SB	16\%
	0	0	0	12	12	0\%	N	0\%				Queen St W WB	Total		100\%
116 122	0	0	0	16	16	0\%	w				0\%	Queen St w WB			
124	0	0	0	10	10	0\%	NW	0\%				Queen St W WB			
125	0	0	16	44	60	2\%	NW	2\%				Queen St W WB		Out Summary	
PD 3 of Toronto	27	0	44	25	96	3\%	N	3\%				Queen St W Eb	Direction To	\%	
PD 4 of Toronto	38	106	12	17	173	5\%	NE	5\%				Queen St W EB	N	15\%	
PD 5 of Toronto	27	22	44	21	114	3\%	NE			3\%		Jameson Ave SB	NE	15\%	
PD 6 of Toronto	51	0	0	0	51	2\%	E			2\%		Jameson Ave SB	NW	10\%	
PD 7 of Toronto	0	22	0	6	28	1\%	w				1\%	Jameson Ave SB	5	8\%	
PD 8 of Toronto	95	0	57	33	185	6\%	w				3\%	Jameson Ave SB	E	31\%	
							w	3\%				Queen St W EB	w	21\%	
PD 9 of Toronto	27	17	74	0	118	4\%	NW	2\%				Queen St W EB	SUM	100\%	
							NW				2\%	Jameson Ave SB			
PD 10 of Toronto	41	7	37	0	85	3\%	N	3\%				Queen St W EB	Predicte	d Route Summary	
PD 11 of Toronto	28	0	0	26	54	2\%	N	2\%				Queen St W EB	Lansdowne Ave NB	2\%	
PD 12 of Toronto	17	0	84	0	101	3\%	NE	2\%				Queen St W EB	Jameson Ave SB	40\%	
							ne			2\%		Jameson Ave SB	Queen St W EB	50\%	
PD 13 of Toronto	18	33	35	0	86	3\%	E	1\%				Queen St W EB	Queen St W WB	8\%	
							E			1\%		Jameson Ave SB	Total	100\%	
PD 16 of Toronto	22	0	0	0	22	1\%	NE			1\%		J Jmeson Ave SB			
Ajax	18	0	0	0	18	1\%	E			1\%		Jameson Ave SB			
Georgina	0		21	0	21	1\%	N			1\%		Jameson Ave SB			
Richmond Hill	0	0	0	12	12	0\%	N			0\%		Jameson Ave SB			
Markham	41	0	6		47	1\%	N			1\%		Jameson Ave SB			
Vaughan	27	0	0	14	41	1\%	N	1\%				Queen St w wb			
Brampton	41	0	49	15	105	3\%	NW				3\%	Jameson Ave SB			
Mississauga	187	6	70	16	279	8\%	w				8\%	Jameson Ave SB			
Milton	0	0	6	0	6	0\%	w				0\%	Jameson Ave SB			
Oakville	19	0	0	0	19	1\%	w				1\%	Jameson Ave SB			
Burlington	24	0	0	4	28	1\%	w				1\%	Jameson Ave SB			
Hamilton	20		0	0	20	1\%	w				1\%	Jameson Ave SB			
Niagara Falls	0	0	27	0	27	1\%	w				1\%	Jameson Ave SB			
Waterloo	12	0	0	0	12	0\%	w				0\%	Jameson Ave SB			
Kitchener	31	0	0	0	31	1\%	w				1\%	Jameson Ave SB			
External	0	0	0	4	4	0\%	N	0\%				Jameson Ave SB			
				c	3360	100\%		31\%	8\%	38\%	24\%				

PD 2:
Thu Feb 02 2023 09:35:32 GMT-0500 (Eastern Standard Time) - Run Time: 3134ms
Cross Tabulation Query Form - Trip - 2016 v1.1
Row: 2006 GTA zone of destination - gta06_des
Column: 2006 GTA zone of origin - gta06_orig
Filters
(2006 GTA zone of origin - gta06_orig In 89, 109, 110, 11
Start time of trip - start_time In 730-930
Trip purpose of origin - purp_orig In \vdash
and
Primary travel mode of trip - mode_prime $\operatorname{In} \mathrm{D}, \mathrm{M}$
and
Planning district of destination - pd_dest In 2)
Trip 2016
Table:

	89	109	110	113
89	89	0	0	0
91	4	0	0	0
95	0	8	7	0
97	0	6	0	0
98	0	15	0	0
101	0	0	66	0
105	76	0	0	0
107	0	0	6	0
108	0	18	0	0
19	0	0	16	0
110	0	8	249	0
113	0	10	27	7
114	0	0	12	31
115	27	0	0	12
116	0	0	0	12
122	0	0	0	16
124	0	0	0	10
125	0	0	16	44

APPENDIX G

Residential Trip Generation Proxy Surveys

625 Cochrane Drive, $5^{\text {th }}$ Floor
Markham, ON, L3R 9R9 Canada
T | 9054700015 F | 9054700030
WWW.LEA.CA

2015 Residential Proxy Site Trip Generation

Proxy Site	No. of Units	Trip Rate					
		Weekday AM			Weekday PM		
		In	Out	Total	In	Out	Total
Auto Trip Generation Rates (per Unit)							
15 Stafford Street	142 Units	0.05	0.11	0.17	0.12	0.06	0.18
25 Stafford Street	104 Units	0.02	0.05	0.07	0.04	0.03	0.08
Pedestrian Trip Generation Rates (per Unit)							
15 Stafford Street	142 Units	0.05	0.15	0.20	0.14	0.07	0.21
25 Stafford Street	104 Units	0.04	0.12	0.16	0.07	0.05	0.11
Cyclist Trip Generation Rates (per Unit)							
15 Stafford Street	142 Units	0.00	0.03	0.03	0.01	0.00	0.01
25 Stafford Street	104 Units	0.00	0.02	0.03	0.01	0.00	0.01

2023 Residential Proxy Site Trip Generation

Proxy Site	No. of Units	Trip Rate					
		Weekday AM			Weekday PM		
		In	Out	Total	In	Out	Total
Auto Trip Generation Rates (per Unit)							
15 Stafford Street	142 Units	0.01	0.12	0.13	0.10	0.06	0.15
25 Stafford Street	104 Units	0.02	0.08	0.10	0.09	0.01	0.10
Pedestrian Trip Generation Rates (per Unit)							
15 Stafford Street	142 Units	0.06	0.10	0.15	0.13	0.08	0.21
25 Stafford Street	104 Units	0.12	0.24	0.36	0.22	0.13	0.35
Cyclist Trip Generation Rates (per Unit)							
15 Stafford Street	142 Units	0.00	0.00	0.00	0.00	0.00	0.00
25 Stafford Street	104 Units	0.00	0.00	0.00	0.01	0.01	0.02

Average Residential Proxy Site Trip Generation Applied Rates

Proxy Site	Average Trip Rate					
	Weekday AM			Weekday PM		
	In	Out	Total	In	Out	Total
Average Auto Trip Generation Rates (per Unit)						
15 \& 25 Stafford Street (2023)	0.02	0.10	0.11	0.09	0.03	0.13
15 \& 25 Stafford Street (2015)	0.04	0.08	0.12	0.08	0.05	0.13
Average Pedestrian Trip Generation Rates (per Unit)						
15 \& 25 Stafford Street (2023)	0.09	0.17	0.26	0.17	0.10	0.28
15 \& 25 Stafford Street (2015)	0.04	0.14	0.18	0.10	0.06	0.16
Average Cyclist Trip Generation Rates (per Unit)						
15 \& 25 Stafford Street (2023)	0.00	0.00	0.00	0.00	0.00	0.01
15 \& 25 Stafford Street (2015)	0.00	0.03	0.03	0.01	0.00	0.01

Of note, some rounding errors may occur for the total rates provided

15 Stafford Street Trip Generation										
AM Peak Hour (8:00-9:00a)										
Date	Inbound					Outbound				
	Peds	Auto	Bicycle	Taxi	Car Share	Peds	Auto	Bicycle	Taxi	Car Share
June 5th	3	9	0	0	0	9	12	5	0	0
June 6th	6	4	0	0	0	6	13	1	0	0
June 7th	2	0	0	0	0	9	4	0	0	0
June 8th	0	0	0	0	0	0	0	0	0	0
June 9th	8	1	0	0	0	29	18	5	0	0
June 10th	11	5	1	0	0	21	17	4	0	0
June 11th	4	6	0	1	0	30	16	4	1	0
June 12th	7	17	0	0	0	18	18	2	0	0
				PM P	k Hour (5:00	-6:00p)				
Date	Inbound					Outbound				
	Peds	Auto	Bicycle	Taxi	Car Share	Peds	Auto	Bicycle	Taxi	Car Share
June 5th	19	18	1	1	0	9	8	0	1	0
June 6th	16	16	0	0	0	17	8	2	0	0
June 7th	10	13	0	0	0	9	9	1	0	0
June 8th	11	25	2	1	0	10	5	0	1	0
June 9th	32	18	2	0	0	14	14	1	0	0
June 10th	34	19	2	0	0	8	9	0	0	0
June 11th	7	16	1	1	0	12	8	0	1	0
June 12th	7	11	0	0	0	6	4	0	0	0

Average Trip Gen (weekday)

AM Peak Hour (8:00-9:00a)									
Inbound					Outbound				
Peds	Auto	Bicycle	Taxi	Car Share	Peds	Auto	Bicycle	Taxi	Car Share
6.6	7.6	0.2	0.2	0	21.4	16.2	4	0.2	0
PM Peak Hour (5:00-6:00p)									
Inbound					Outbound				
Peds	Auto	Bicycle	Taxi	Car Share	Peds	Auto	Bicycle	Taxi	Car Share
19.8	16.4	1.2	0.4	0	9.8	8.6	0.2	0.4	0

Trip Gen Rate (per unit)
142

AM Peak Hour (8:00-9:00a)									
Inbound					Outbound				
Peds	Auto	Bicycle	Taxi	Car Share	Peds	Auto	Bicycle	Taxi	Car Share
0.05	0.05	0.00	0.00	0.00	0.15	0.11	0.03	0.00	0.00
PM Peak Hour (5:00-6:00p)									
Inbound					Outbound				
Peds	Auto	Bicycle	Taxi	Car Share	Peds	Auto	Bicycle	Taxi	Car Share

Trip Gen Rate (per unit) \qquad 104

AM Peak Hour (8:00-9:00a)									
Inbound					Outbound				
Peds	Auto	Bicycle	Taxi	Car Share	Peds	Auto	Bicycle	Taxi	Car Share
0.04	0.02	0.00	0.00	0.00	0.12	0.05	0.02	0.00	0.00
PM Peak Hour (5:00-6:00p)									
Inbound					Outbound				
Peds	Auto	Bicycle	Taxi	Car Share	Peds	Auto	Bicycle	Taxi	Car Share
0.0									

TABULAR SUMMARY OF TRIP GENERATION COUNT

countoter
prolecti:

Locatoo: $\frac{\text { Clear }}{{ }_{1} \text { Stafford St, Toronto }}$

TIME	UNDOERGR		Ofineway		тота।			
	Left	Right	Left	Right				
7730					0	8	${ }_{8}$	
7:45					1	0	1	
$8: 00$	0				0	4	4	
${ }_{8} 815$	1				1	5	6	19
8:30	3				3	1	4	15
8:45					0	3	3	17
9:00					0	0	0	
9.15	0				0	0	0	$\frac{1}{7}$
TOTAL				20	5	${ }^{21}$,	
АM PEAK				10	5	10	15	

Peak Hour Trip Gen

TABULAR SUMMARY OF TRIP GENERATION COUNT

tIME	UNDERGROUND DRNEWAY				total			
	InBound		outbound		18	ов	All	HoURIV
	Left	Right	Left	Right				
7:30	0		0		0	1	1	
7:45	0				0	$\stackrel{2}{2}$	2	
8:30	1		2			2	${ }_{3}$	${ }_{8}$
8:45	1	,	3	0	1	3	4	10
9:00	0		0		0	0	0	9
9:15	0		0		0	1	1	8
TOTAL	2		10		2	12	14	
AM PEAK	1		7		1	7	8	

Peak Hour Trip Gen

Trip Gen Rate (per unit) \qquad ${ }_{\text {AM Peakithour }}^{104}$

APPENDIX H

Existing Conditions Intersection Capacity Analysis

AM Peak Hour

Cycle Length: 102
Actuated Cycle Length: 102
Offset: 99 (97\%), Referenced to phase 2:EBTL and 6:WBT, Start of 1st Green
Natural Cycle: 100
Control Type: Pretimed
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
m Volume for 95 th percentile queue is metered by upstream signal.

Splits and Phases: 1: Queen St W \& Lansdowne Ave

Cycle Length: 102
Actuated Cycle Length: 102
Offset: 99 (97%), Referenced to phase 2:EBTL and 6:WBT, Start of 1st Green
Natural Cycle: 100
Control Type: Pretimed
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 2: Jameson Ave \& Queen St W

	\rightarrow	\％	7		4	\％	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	性			＊个	${ }^{*}$	「	
Traffic Volume（vph）	377	24	186	209	55	181	
Future Volume（vph）	377	24	186	209	55	181	
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	
Lane Width	3.0	3.0	3.0	3.0	3.0	3.0	
Total Lost time（s）	10.0			10.0	10.0	10.0	
Lane Util．Factor	＊0．88			＊0．93	1.00	1.00	
Frpb，ped／bikes	0.98			1.00	1.00	0.97	
Flpb，ped／bikes	1.00			0.95	0.69	1.00	
Frt	0.99			1.00	1.00	0.85	
Flt Protected	1.00			0.98	0.95	1.00	
Satd．Flow（prot）	2377			2451	1044	1126	
Flt Permitted	1.00			0.63	0.95	1.00	
Satd．Flow（perm）	2377			1584	1044	1126	
Peak－hour factor，PHF	0.93	0.93	0.93	0.93	0.93	0.93	
Adj．Flow（vph）	405	26	200	225	59	195	
RTOR Reduction（vph）	4	0	0	0	0	0	
Lane Group Flow（vph）	427	0	0	425	59	195	
Confl．Peds．（\＃／hr）		160	160		246	8	
Confl．Bikes（\＃／hr）		11				8	
Heavy Vehicles（\％）	10\％	0\％	4\％	19\％	0\％	5\％	
Bus Blockages（\＃／hr）	22	0	0	0	0	0	
Parking（\＃／hr）						0	
Turn Type	NA		pm＋pt	NA	Perm	Perm	
Protected Phases	2		8	6			
Permitted Phases			6		7	7	
Actuated Green，G（s）	27.0			48.0	21.0	21.0	
Effective Green，g（s）	28.0			50.0	22.0	22.0	
Actuated g／C Ratio	0.27			0.49	0.22	0.22	
Clearance Time（s）	11.0			11.0	11.0	11.0	
Lane Grp Cap（vph）	652			963	225	242	
v／s Ratio Prot	c0．18			c0．10			
v／s Ratio Perm				0.12	0.06	c0．17	
v／c Ratio	0.65			0.44	0.26	0.81	
Uniform Delay，d1	32.7			16.9	33.3	38.0	
Progression Factor	0.82			0.19	1.00	1.00	
Incremental Delay，d2	4.7			1.1	2.8	24.2	
Delay（s）	31.5			4.4	36.1	62.1	
Level of Service	C			A	D	E	
Approach Delay（s）	31.5			4.4	56.1		
Approach LOS	C			A	E		
Intersection Summary							
HCM 2000 Control Delay			26.7		HCM 2000	evel of Service	C
HCM 2000 Volume to Capacity ratio			0.65				
Actuated Cycle Length（s）			102.0		Sum of los	ime（s）	32.0
Intersection Capacity Utilization			80．8\％		CU Level	Service	D
Analysis Period（min）			15				
c Critical Lane Group							

Intersection												
Int Delay, s/veh	3.1											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		* ${ }^{\text {¢ }}$			+1\%			*			4	
Traffic Vol, veh/h	63	394	2	2	233	24	0	1	3	28	0	58
Future Vol, veh/h	63	394	2	2	233	24	0	1	3	28	0	58
Conflicting Peds, \#/hr	174	0	98	98	0	174	13	0	11	11	0	13
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	93	93	93	93	93	93	93	93	93	93	93	93
Heavy Vehicles, \%	6	12	0	0	12	46	0	0	33	0	0	3
Mvmt Flow	68	424	2	2	251	26	0	1	3	30	0	62

	4	\rightarrow	\Perp	\pm	4
Lane Group	EBL	EBT	WBT	SBL	SBR
Lane Configurations		* \uparrow	中\%	${ }^{7}$	「
Traffic Volume (vph)	114	493	197	53	20
Future Volume (vph)	114	493	197	53	20
Lane Group Flow (vph)	0	675	299	59	22
Turn Type	Perm	NA	NA	Perm	Perm
Protected Phases		2	6		
Permitted Phases	2			8	8
Detector Phase	2	2	6	8	8
Switch Phase					
Minimum Initial (s)	24.0	24.0	24.0	21.0	21.0
Minimum Split (s)	29.7	29.7	29.7	27.1	27.1
Total Split (s)	74.0	74.0	74.0	28.0	28.0
Total Split (\%)	72.5\%	72.5\%	72.5\%	27.5\%	27.5\%
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0
All-Red Time (s)	2.7	2.7	2.7	3.1	3.1
Lost Time Adjust (s)		-1.0	-1.0	-1.0	-1.0
Total Lost Time (s)		4.7	4.7	5.1	5.1
Lead/Lag					
Lead-Lag Optimize?					
Recall Mode	C-Max	C-Max	C-Max	None	None
v/c Ratio		0.49	0.17	0.22	0.08
Control Delay		8.4	6.0	35.7	13.7
Queue Delay		0.0	0.0	0.0	0.0
Total Delay		8.4	6.0	35.7	13.7
Queue Length 50th (m)		34.8	8.6	10.2	0.0
Queue Length 95th (m)		50.1	17.8	22.1	6.6
Internal Link Dist (m)		195.6	227.3	112.1	
Turn Bay Length (m)					35.0
Base Capacity (vph)		1379	1721	273	302
Starvation Cap Reductn		0	0	0	0
Spillback Cap Reductn		0	0	0	0
Storage Cap Reductn		0	0	0	0
Reduced v/c Ratio		0.49	0.17	0.22	0.07

Intersection Summary

Cycle Length: 102
Actuated Cycle Length: 102
Offset: 70 (69\%), Referenced to phase 2:EBTL and 6:WBT, Start of 1st Green
Natural Cycle: 60
Control Type: Actuated-Coordinated

Splits and Phases: 4: Queen St W \& Sorauren Ave

4	\rightarrow	\Perp		t	4	
Movement EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	¢ \uparrow	恨		${ }^{1}$	「	
Traffic Volume (vph) 114	493	197	72	53	20	
Future Volume (vph) 114	493	197	72	53	20	
Ideal Flow (vphpl) 1900	1900	1900	1900	1900	1900	
Lane Width 3.0	3.0	3.0	3.0	3.0	3.0	
Total Lost time (s)	4.7	4.7		5.1	5.1	
Lane Util. Factor	*0.88	*0.93		1.00	1.00	
Frpb, ped/bikes	1.00	0.96		1.00	0.94	
Flpb, ped/bikes	0.99	1.00		0.93	1.00	
Frt	1.00	0.96		1.00	0.85	
Flt Protected	0.99	1.00		0.95	1.00	
Satd. Flow (prot)	2264	2266		1220	1270	
Flt Permitted	0.80	1.00		0.95	1.00	
Satd. Flow (perm)	1837	2266		1220	1270	
Peak-hour factor, PHF 0.90	0.90	0.90	0.90	0.90	0.90	
Adj. Flow (vph) 127	548	219	80	59	22	
RTOR Reduction (vph) 0	0	22	0	0	18	
Lane Group Flow (vph) 0	675	277	0	59	4	
Confl. Peds. (\#/hr) 55			55	48	34	
Confl. Bikes (\#/hr)			5		3	
Heavy Vehicles (\%) 4\%	10\%	12\%	8\%	4\%	0\%	
Bus Blockages (\#/hr) 0	27	18	0	0	0	
Parking (\#/hr)	0	0		0		
Turn Type Perm	NA	NA		Perm	Perm	
Protected Phases	2	6				
Permitted Phases 2				8	8	
Actuated Green, G (s)	73.4	73.4		16.8	16.8	
Effective Green, g (s)	74.4	74.4		17.8	17.8	
Actuated g/C Ratio	0.73	0.73		0.17	0.17	
Clearance Time (s)	5.7	5.7		6.1	6.1	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	1339	1652		212	221	
v/s Ratio Prot		0.12				
v/s Ratio Perm	c0.37			c0.05	0.00	
v/c Ratio	0.50	0.17		0.28	0.02	
Uniform Delay, d1	5.9	4.3		36.5	34.9	
Progression Factor	1.00	1.51		1.00	1.00	
Incremental Delay, d2	1.4	0.2		0.7	0.0	
Delay (s)	7.3	6.6		37.2	34.9	
Level of Service	A	A		D	C	
Approach Delay (s)	7.3	6.6		36.6		
Approach LOS	A	A		D		
Intersection Summary						
HCM 2000 Control Delay		9.3	HCM 2000 Level of Service			A
HCM 2000 Volume to Capacity ratio		0.47				
Actuated Cycle Length (s)		102.0	Sum of lost time (s)			10.8
Intersection Capacity Utilization		69.6\%	ICU Level of Service			C
Analysis Period (min)		15				

c Critical Lane Group

PM Peak Hour

	4	\rightarrow	$\bullet-$	\%	\pm
Lane Group	EBL	EBT	WBT	SBL	SBR
Lane Configurations		+4	性	${ }^{*}$	F
Traffic Volume (vph)	196	333	369	87	159
Future Volume (vph)	196	333	369	87	159
Lane Group Flow (vph)	0	540	457	89	162
Turn Type	pm+pt	NA	NA	Perm	Perm
Protected Phases	7	2	6		
Permitted Phases	2			8	8
Minimum Split (s)	32.0	34.0	34.0	32.0	32.0
Total Split (s)	32.0	38.0	38.0	32.0	32.0
Total Split (\%)	31.4\%	37.3\%	37.3\%	31.4\%	31.4\%
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0
All-Red Time (s)	8.0	8.0	8.0	8.0	8.0
Lost Time Adjust (s)		-1.0	-1.0	-1.0	-1.0
Total Lost Time (s)		10.0	10.0	10.0	10.0
Lead/Lag	Lead			Lag	Lag
Lead-Lag Optimize?					
v/c Ratio		0.50	0.67	0.43	0.71
Control Delay		5.7	36.6	42.0	55.8
Queue Delay		0.6	0.0	0.0	0.0
Total Delay		6.2	36.6	42.0	55.8
Queue Length 50th (m)		6.2	40.3	16.1	31.4
Queue Length 95th (m)		m9.3	57.9	32.3	\#62.3
Internal Link Dist (m)		27.5	139.5	205.4	
Turn Bay Length (m)					45.0
Base Capacity (vph)		1089	682	208	228
Starvation Cap Reductn		228	0	0	0
Spillback Cap Reductn		0	0	0	0
Storage Cap Reductn		0	0	0	0
Reduced v/c Ratio		0.63	0.67	0.43	0.71
Intersection Summary					

Cycle Length: 102
Actuated Cycle Length: 102
Offset: 47 (46\%), Referenced to phase 2:EBTL and 6:WBT, Start of 1st Green
Natural Cycle: 100
Control Type: Pretimed
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 1: Queen St W \& Lansdowne Ave

Cycle Length: 102
Actuated Cycle Length: 102
Offset: 47 (46\%), Referenced to phase 2:EBTL and 6:WBT, Start of 1st Green
Natural Cycle: 100
Control Type: Pretimed
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 2: Jameson Ave \& Queen St W

	\rightarrow	\%	7		4	\%	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	1\%			¢个	*	「	
Traffic Volume (vph)	272	31	163	364	79	256	
Future Volume (vph)	272	31	163	364	79	256	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	2100	
Lane Width	3.0	3.0	3.0	3.0	3.0	3.0	
Total Lost time (s)	10.0			10.0	10.0	9.0	
Lane Util. Factor	*0.94			*0.99	1.00	1.00	
Frpb, ped/bikes	0.94			1.00	1.00	0.97	
Flpb, ped/bikes	1.00			0.92	0.67	1.00	
Frt	0.98			1.00	1.00	0.85	
Flt Protected	1.00			0.98	0.95	1.00	
Satd. Flow (prot)	2553			2698	987	1296	
Flt Permitted	1.00			0.74	0.95	1.00	
Satd. Flow (perm)	2553			2030	987	1296	
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	
Adj. Flow (vph)	289	33	173	387	84	272	
RTOR Reduction (vph)	9	0	0	0	0	0	
Lane Group Flow (vph)	313	0	0	560	84	272	
Confl. Peds. (\#/hr)		298	298		308	9	
Confl. Bikes (\#/hr)		15				5	
Heavy Vehicles (\%)	6\%	3\%	1\%	9\%	3\%	1\%	
Bus Blockages (\#/hr)	16	0	0	0	0	0	
Parking (\#/hr)						0	
Turn Type	NA		pm+pt	NA	Perm	Perm	
Protected Phases	2		8	6			
Permitted Phases			6		7	7	
Actuated Green, G (s)	27.0			48.0	21.0	21.0	
Effective Green, g (s)	28.0			50.0	22.0	23.0	
Actuated g/C Ratio	0.27			0.49	0.22	0.23	
Clearance Time (s)	11.0			11.0	11.0	11.0	
Lane Grp Cap (vph)	700			1139	212	292	
v/s Ratio Prot	0.12			c0.11			
v/s Ratio Perm				c0.13	0.09	c0.21	
v/c Ratio	0.45			0.49	0.40	0.93	
Uniform Delay, d1	30.6			17.5	34.3	38.7	
Progression Factor	0.82			0.22	1.00	1.00	
Incremental Delay, d2	2.0			1.1	5.5	37.7	
Delay (s)	27.0			4.9	39.8	76.4	
Level of Service	C			A	D	E	
Approach Delay (s)	27.0			4.9	67.8		
Approach LOS	C			A	E		
Intersection Summary							
HCM 2000 Control Delay			28.7		HCM 2000	evel of Service	C
HCM 2000 Volume to Capacity ratio			0.66				
Actuated Cycle Length (s)			102.0		Sum of los	ime (s)	32.0
Intersection Capacity Utilization			80.8\%		CU Level	Service	D
Analysis Period (min)			15				
c Critical Lane Group							

Intersection												
Int Delay, s/veh	5											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		* ${ }^{1 \%}$			* ${ }^{\text {\% }}$			4			4	
Traffic Vol, veh/h	74	288	5	6	404	31	5	4	5	10	0	95
Future Vol, veh/h	74	288	5	6	404	31	5	4	5	10	0	95
Conflicting Peds, \#/hr	266	0	198	198	0	266	30	0	15	15	0	30
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, \%	0	6	0	0	6	29	0	0	0	10	0	3
Mvmt Flow	80	313	5	7	439	34	5	4	5	11	0	103

Cycle Length: 102
Actuated Cycle Length: 102
Offset: 19 (19\%), Referenced to phase 2:EBTL and 6:WBT, Start of 1st Green
Natural Cycle: 60
Control Type: Actuated-Coordinated

Splits and Phases: 4: Queen St W \& Sorauren Ave

4	\rightarrow	4		\pm		
Movement EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	* \uparrow	中F		${ }^{*}$	「	
Traffic Volume (vph) 133	378	351	127	46	26	
Future Volume (vph) 133	378	351	127	46	26	
Ideal Flow (vphpl) 1900	1900	1900	1900	1900	1900	
Lane Width 3.0	3.0	3.0	3.0	3.0	3.0	
	4.7	4.7		5.1	5.1	
Total Lost time (s)	*0.94	*0.99		1.00	1.00	
Frpb, ped/bikes	1.00	0.96		1.00	0.90	
Flpb, ped/bikes	0.98	1.00		0.89	1.00	
Frt	1.00	0.96		1.00	0.85	
Flt Protected	0.99	1.00		0.95	1.00	
Satd. Flow (prot)	2580	2492		1217	1220	
Flt Permitted	0.71	1.00		0.95	1.00	
Satd. Flow (perm)	1855	2492		1217	1220	
Peak-hour factor, PHF 0.95	0.95	0.95	0.95	0.95	0.95	
Adj. Flow (vph) 140	398	369	134	48	27	
RTOR Reduction (vph) 0	0	33	0	0	22	
Lane Group Flow (vph) 0	538	470	0	48	5	
Confl. Peds. (\#/hr) 65			65	74	59	
Confl. Bikes (\#/hr)			21		4	
Heavy Vehicles (\%) 0\%	5\%	8\%	2\%	0\%	0\%	
Bus Blockages (\#/hr) 0	16	19	0	0	0	
Parking (\#/hr)	0	0		0		
Turn Type Perm	NA	NA		Perm	Perm	
Protected Phases	2	6				
Permitted Phases 2				8	8	
Actuated Green, G (s)	73.4	73.4		16.8	16.8	
Effective Green, g (s)	74.4	74.4		17.8	17.8	
	0.73	0.73		0.17	0.17	
Actuated g/C Ratio Clearance Time (s)	5.7	5.7		6.1	6.1	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	1353	1817		212	212	
v / s Ratio Prot 0.19						
v/s Ratio Perm	c0.29			c0.04	0.00	
v/c Ratio	0.40	0.26		0.23	0.02	
Uniform Delay, d1	5.3	4.6		36.2	34.9	
Progression Factor	1.00	1.54		1.00	1.00	
Incremental Delay, d2	0.9	0.3		0.5	0.0	
Delay (s)	6.1	7.4		36.7	34.9	
Level of Service	A	A		D	C	
Approach Delay (s)	6.1	7.4		36.1		
Approach LOS A A D						
Intersection Summary						
HCM 2000 Control Delay		8.7		HCM 2000	Level of Service	A
HCM 2000 Volume to Capacity ratio		0.37				
Actuated Cycle Length (s)		102.0		Sum of lost	time (s)	10.8
Intersection Capacity Utilization		69.6\%		ICU Level of	Service	C
Analysis Period (min)		15				

c Critical Lane Group

APPENDIX I
2028 Future Background Intersection Capacity Analysis

AM Peak Hour

	4	\rightarrow	\Perp	\pm	4
Lane Group	EBL	EBT	WBT	SBL	SBR
Lane Configurations		* \uparrow	性	${ }^{7}$	「
Traffic Volume (vph)	146	422	273	111	140
Future Volume (vph)	146	422	273	111	140
Lane Group Flow (vph)	0	598	369	117	147
Turn Type	pm+pt	NA	NA	Perm	Perm
Protected Phases	7	2	6		
Permitted Phases	2			8	8
Minimum Split (s)	32.0	34.0	34.0	32.0	32.0
Total Split (s)	32.0	38.0	38.0	32.0	32.0
Total Split (\%)	31.4\%	37.3\%	37.3\%	31.4\%	31.4\%
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0
All-Red Time (s)	8.0	8.0	8.0	8.0	8.0
Lost Time Adjust (s)		-1.0	-1.0	-1.0	-1.0
Total Lost Time (s)		10.0	10.0	10.0	10.0
Lead/Lag	Lead			Lag	Lag
Lead-Lag Optimize?					
v/c Ratio		0.57	0.62	0.58	0.67
Control Delay		5.0	34.7	48.7	53.7
Queue Delay		0.8	0.0	0.0	0.0
Total Delay		5.9	34.7	48.7	53.7
Queue Length 50th (m)		6.3	32.7	22.0	28.3
Queue Length 95th (m)		m12.0	49.7	42.1	\#56.5
Internal Link Dist (m)		27.5	140.2	205.4	
Turn Bay Length (m)					45.0
Base Capacity (vph)		1046	592	202	218
Starvation Cap Reductn		199	0	0	0
Spillback Cap Reductn		0	0	0	0
Storage Cap Reductn		0	0	0	0
Reduced v/c Ratio		0.71	0.62	0.58	0.67
Intersection Summary					

Cycle Length: 102
Actuated Cycle Length: 102
Offset: 99 (97\%), Referenced to phase 2:EBTL and 6:WBT, Start of 1st Green
Natural Cycle: 100
Control Type: Pretimed
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
m Volume for 95 th percentile queue is metered by upstream signal.

Splits and Phases: 1: Queen St W \& Lansdowne Ave

Cycle Length: 102
Actuated Cycle Length: 102
Offset: 99 (97%), Referenced to phase 2:EBTL and 6:WBT, Start of 1st Green
Natural Cycle: 100
Control Type: Pretimed
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.

Splits and Phases: 2: Jameson Ave \& Queen St W

	\rightarrow		7		4	\％	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	中F			＊个	${ }^{7}$	「	
Traffic Volume（vph）	387	24	187	219	55	181	
Future Volume（vph）	387	24	187	219	55	181	
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	
Lane Width	3.0	3.0	3.0	3.0	3.0	3.0	
Total Lost time（s）	10.0			10.0	10.0	10.0	
Lane Util．Factor	＊0．88			＊0．93	1.00	1.00	
Frpb，ped／bikes	0.98			1.00	1.00	0.97	
Flpb，ped／bikes	1.00			0.95	0.69	1.00	
Frt	0.99			1.00	1.00	0.85	
Flt Protected	1.00			0.98	0.95	1.00	
Satd．Flow（prot）	2379			2455	1044	1126	
Flt Permitted	1.00			0.63	0.95	1.00	
Satd．Flow（perm）	2379			1577	1044	1126	
Peak－hour factor，PHF	0.93	0.93	0.93	0.93	0.93	0.93	
Adj．Flow（vph）	416	26	201	235	59	195	
RTOR Reduction（vph）	4	0	0	0	0	0	
Lane Group Flow（vph）	438	0	0	436	59	195	
Confl．Peds．（\＃／hr）		160	160		246	8	
Confl．Bikes（\＃／hr）		11				8	
Heavy Vehicles（\％）	10\％	0\％	4\％	19\％	0\％	5\％	
Bus Blockages（\＃／hr）	22	0	0	0	0	0	
Parking（\＃／hr）						0	
Turn Type	NA		pm＋pt	NA	Perm	Perm	
Protected Phases	2		8	6			
Permitted Phases			6		7	7	
Actuated Green，G（s）	27.0			48.0	21.0	21.0	
Effective Green，g（s）	28.0			50.0	22.0	22.0	
Actuated g／C Ratio	0.27			0.49	0.22	0.22	
Clearance Time（s）	11.0			11.0	11.0	11.0	
Lane Grp Cap（vph）	653			962	225	242	
v／s Ratio Prot	c0．18			c0．10			
v／s Ratio Perm				0.12	0.06	c0．17	
v／c Ratio	0.67			0.45	0.26	0.81	
Uniform Delay，d1	32.9			17.0	33.3	38.0	
Progression Factor	0.82			0.21	1.00	1.00	
Incremental Delay，d2	5.0			1.2	2.8	24.2	
Delay（s）	31.8			4.8	36.1	62.1	
Level of Service	C			A	D	E	
Approach Delay（s）	31.8			4.8	56.1		
Approach LOS	C			A	E		
Intersection Summary							
HCM 2000 Control Delay			26.8		CM 2000	evel of Service	C
HCM 2000 Volume to Capacity ratio			0.66				
Actuated Cycle Length（s）			102.0		um of los	ime（s）	32.0
Intersection Capacity Utilization			80．8\％		U Level	Service	D
Analysis Period（min）			15				
C Critical Lane Group							

Intersection												
Int Delay, s/veh	3											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		* ${ }^{\text {\% }}$			* ${ }^{\text {\% }}$			\$			\$	
Traffic Vol, veh/h	63	404	2	2	243	24	0	1	3	28	0	58
Future Vol, veh/h	63	404	2	2	243	24	0	1	3	28	0	58
Conflicting Peds, \#/hr	174	0	98	98	0	174	13	0	11	11	0	13
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	93	93	93	93	93	93	93	93	93	93	93	93
Heavy Vehicles, \%	6	12	0	0	12	46	0	0	33	0	0	3
Mvmt Flow	68	434	2	2	261	26	0	1	3	30	0	62

	4	\rightarrow	4	(4
Lane Group	EBL	EBT	WBT	SBL	SBR
Lane Configurations		* \uparrow	个\%	${ }^{7}$	「
Traffic Volume (vph)	114	503	207	53	20
Future Volume (vph)	114	503	207	53	20
Lane Group Flow (vph)	0	686	310	59	22
Turn Type	Perm	NA	NA	Perm	Perm
Protected Phases		2	6		
Permitted Phases	2			8	8
Detector Phase	2	2	6	8	8
Switch Phase					
Minimum Initial (s)	24.0	24.0	24.0	21.0	21.0
Minimum Split (s)	29.7	29.7	29.7	27.1	27.1
Total Split (s)	74.0	74.0	74.0	28.0	28.0
Total Split (\%)	72.5\%	72.5\%	72.5\%	27.5\%	27.5\%
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0
All-Red Time (s)	2.7	2.7	2.7	3.1	3.1
Lost Time Adjust (s)		-1.0	-1.0	-1.0	-1.0
Total Lost Time (s)		4.7	4.7	5.1	5.1
Lead/Lag					
Lead-Lag Optimize?					
Recall Mode	C-Max	C-Max	C-Max	None	None
v/c Ratio		0.50	0.18	0.22	0.08
Control Delay		8.6	6.3	35.7	13.7
Queue Delay		0.0	0.0	0.0	0.0
Total Delay		8.6	6.3	35.7	13.7
Queue Length 50th (m)		35.7	11.9	10.2	0.0
Queue Length 95th (m)		51.4	18.9	22.1	6.6
Internal Link Dist (m)		201.5	227.3	112.1	
Turn Bay Length (m)					35.0
Base Capacity (vph)		1375	1724	273	302
Starvation Cap Reductn		0	0	0	0
Spillback Cap Reductn		0	0	0	0
Storage Cap Reductn		0	0	0	0
Reduced v/c Ratio		0.50	0.18	0.22	0.07

Intersection Summary

Cycle Length: 102
Actuated Cycle Length: 102
Offset: 70 (69\%), Referenced to phase 2:EBTL and 6:WBT, Start of 1st Green
Natural Cycle: 60
Control Type: Actuated-Coordinated

Splits and Phases: 4: Queen St W \& Sorauren Ave

4	\rightarrow	\square		\pm	4	
Movement EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	* \uparrow	性		${ }^{1}$	「	
Traffic Volume (vph) 114	503	207	72	53	20	
Future Volume (vph) 114	503	207	72	53	20	
Ideal Flow (vphpl) 1900	1900	1900	1900	1900	1900	
Lane Width 3.0	3.0	3.0	3.0	3.0	3.0	
Total Lost time (s)	4.7	4.7		5.1	5.1	
Lane Util. Factor	*0.88	*0.93		1.00	1.00	
Frpb, ped/bikes	1.00	0.96		1.00	0.94	
Flpb, ped/bikes	0.99	1.00		0.93	1.00	
Frt	1.00	0.96		1.00	0.85	
Flt Protected	0.99	1.00		0.95	1.00	
Satd. Flow (prot)	2265	2272		1220	1270	
Flt Permitted	0.80	1.00		0.95	1.00	
Satd. Flow (perm)	1834	2272		1220	1270	
Peak-hour factor, PHF 0.90	0.90	0.90	0.90	0.90	0.90	
Adj. Flow (vph) 127	559	230	80	59	22	
RTOR Reduction (vph) 0	0	22	0	0	18	
Lane Group Flow (vph) 0	686	288	0	59	4	
Confl. Peds. (\#/hr) 55			55	48	34	
Confl. Bikes (\#/hr)			5		3	
Heavy Vehicles (\%) 4\%	10\%	12\%	8\%	4\%	0\%	
Bus Blockages (\#/hr) 0	27	18	0	0	0	
Parking (\#/hr)	0	0		0		
Turn Type Perm	NA	NA		Perm	Perm	
Protected Phases	2	6				
Permitted Phases 2				8	8	
Actuated Green, G (s)	73.4	73.4		16.8	16.8	
Effective Green, g (s)	74.4	74.4		17.8	17.8	
Actuated g/C Ratio	0.73	0.73		0.17	0.17	
Clearance Time (s)	5.7	5.7		6.1	6.1	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	1337	1657		212	221	
v/s Ratio Prot		0.13				
v/s Ratio Perm	c0.37			c0.05	0.00	
v/c Ratio	0.51	0.17		0.28	0.02	
Uniform Delay, d1	6.0	4.3		36.5	34.9	
Progression Factor	1.00	1.57		1.00	1.00	
Incremental Delay, d2	1.4	0.2		0.7	0.0	
Delay (s)	7.4	6.9		37.2	34.9	
Level of Service	A	A		D	C	
Approach Delay (s)	7.4	6.9		36.6		
Approach LOS	A	A		D		
Intersection Summary						
HCM 2000 Control Delay		9.4	HCM 2000 Level of Service			A
HCM 2000 Volume to Capacity ratio		0.47				
Actuated Cycle Length (s)		102.0	Sum of lost time (s)			10.8
Intersection Capacity Utilization		69.6\%	ICU Level of Service			C
Analysis Period (min)		15				

c Critical Lane Group

PM Peak Hour

	4	\rightarrow	4		
Lane Group	EBL	EBT	WBT	SBL	SBR
Lane Configurations		* 4	性	${ }^{7}$	7
Traffic Volume (vph)	196	403	380	87	159
Future Volume (vph)	196	403	380	87	159
Lane Group Flow (vph)	0	611	468	89	162
Turn Type	pm+pt	NA	NA	Perm	Perm
Protected Phases	7	2	6		
Permitted Phases	2			8	8
Minimum Split (s)	32.0	34.0	34.0	32.0	32.0
Total Split (s)	32.0	38.0	38.0	32.0	32.0
Total Split (\%)	31.4\%	37.3\%	37.3\%	31.4\%	31.4\%
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0
All-Red Time (s)	8.0	8.0	8.0	8.0	8.0
Lost Time Adjust (s)		-1.0	-1.0	-1.0	-1.0
Total Lost Time (s)		10.0	10.0	10.0	10.0
Lead/Lag	Lead			Lag	Lag
Lead-Lag Optimize?					
v/c Ratio		0.55	0.69	0.43	0.71
Control Delay		5.8	37.2	42.0	55.8
Queue Delay		0.8	0.0	0.0	0.0
Total Delay		6.7	37.2	42.0	55.8
Queue Length 50th (m)		6.1	41.7	16.1	31.4
Queue Length 95th (m)		m9.2	59.5	32.3	\#62.3
Internal Link Dist (m)		27.5	147.3	205.4	
Turn Bay Length (m)					45.0
Base Capacity (vph)		1102	683	208	228
Starvation Cap Reductn		230	0	0	0
Spillback Cap Reductn		0	0	0	0
Storage Cap Reductn		0	0	0	0
Reduced v/c Ratio		0.70	0.69	0.43	0.71
Intersection Summary					

Cycle Length: 102
Actuated Cycle Length: 102
Offset: 47 (46\%), Referenced to phase 2:EBTL and 6:WBT, Start of 1st Green
Natural Cycle: 100
Control Type: Pretimed
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
m Volume for 95 th percentile queue is metered by upstream signal.

Splits and Phases: 1: Queen St W \& Lansdowne Ave

Cycle Length: 102
Actuated Cycle Length: 102
Offset: 47 (46\%), Referenced to phase 2:EBTL and 6:WBT, Start of 1st Green
Natural Cycle: 100
Control Type: Pretimed
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 2: Jameson Ave \& Queen St W

	\rightarrow		7		4	\%	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	㻢			${ }^{\text {¢ }}$ ¢	${ }^{1}$	「	
Traffic Volume (vph)	342	31	164	374	79	256	
Future Volume (vph)	342	31	164	374	79	256	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	2100	
Lane Width	3.0	3.0	3.0	3.0	3.0	3.0	
Total Lost time (s)	10.0			10.0	10.0	9.0	
Lane Util. Factor	*0.94			*0.99	1.00	1.00	
Frpb, ped/bikes	0.95			1.00	1.00	0.97	
Flpb, ped/bikes	1.00			0.93	0.67	1.00	
Frt	0.99			1.00	1.00	0.85	
Flt Protected	1.00			0.99	0.95	1.00	
Satd. Flow (prot)	2588			2729	987	1296	
Flt Permitted	1.00			0.72	0.95	1.00	
Satd. Flow (perm)	2588			1991	987	1296	
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	
Adj. Flow (vph)	364	33	174	398	84	272	
RTOR Reduction (vph)	7	0	0	0	0	0	
Lane Group Flow (vph)	390	0	0	572	84	272	
Confl. Peds. (\#/hr)		298	298		308	9	
Confl. Bikes (\#/hr)		15				5	
Heavy Vehicles (\%)	6\%	3\%	1\%	9\%	3\%	1\%	
Bus Blockages (\#/hr)	16	0	0	0	0	0	
Parking (\#/hr)						0	
Turn Type	NA		pm+pt	NA	Perm	Perm	
Protected Phases	2		8	6			
Permitted Phases			6		7	7	
Actuated Green, G (s)	27.0			48.0	21.0	21.0	
Effective Green, g (s)	28.0			50.0	22.0	23.0	
Actuated g/C Ratio	0.27			0.49	0.22	0.23	
Clearance Time (s)	11.0			11.0	11.0	11.0	
Lane Grp Cap (vph)	710			1135	212	292	
v/s Ratio Prot	c0.15			c0.11			
v/s Ratio Perm				0.14	0.09	c0.21	
v/c Ratio	0.55			0.50	0.40	0.93	
Uniform Delay, d1	31.6			17.6	34.3	38.7	
Progression Factor	0.81			0.25	1.00	1.00	
Incremental Delay, d2	2.9			1.2	5.5	37.7	
Delay (s)	28.6			5.7	39.8	76.4	
Level of Service	C			A	D	E	
Approach Delay (s)	28.6			5.7	67.8		
Approach LOS	C			A	E		
Intersection Summary							
HCM 2000 Control Delay			29.2		CM 2000	evel of Service	C
HCM 2000 Volume to Capacity ratio			0.68				
Actuated Cycle Length (s)			102.0		um of los	ime (s)	32.0
Intersection Capacity Utilization			80.8\%		U Level	Service	D
Analysis Period (min)			15				
C Critical Lane Group							

Cycle Length: 102
Actuated Cycle Length: 102
Offset: 19 (19\%), Referenced to phase 2:EBTL and 6:WBT, Start of 1st Green
Natural Cycle: 60
Control Type: Actuated-Coordinated

Splits and Phases: 4: Queen St W \& Sorauren Ave

c Critical Lane Group

APPENDIX J

2028 Future Total Intersection Capacity Analysis

AM Peak Hour

Cycle Length: 102
Actuated Cycle Length: 102
Offset: 99 (97\%), Referenced to phase 2:EBTL and 6:WBT, Start of 1st Green
Natural Cycle: 100
Control Type: Pretimed
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
m Volume for 95 th percentile queue is metered by upstream signal.

Splits and Phases: 1: Queen St W \& Lansdowne Ave

Cycle Length: 102
Actuated Cycle Length: 102
Offset: 99 (97%), Referenced to phase 2:EBTL and 6:WBT, Start of 1st Green
Natural Cycle: 100
Control Type: Pretimed
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 2: Jameson Ave \& Queen St W

	\rightarrow		7		4	\%	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	1F			${ }^{\text {¢ }}$ ¢	${ }^{1}$	「	
Traffic Volume (vph)	400	34	187	221	56	181	
Future Volume (vph)	400	34	187	221	56	181	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Lane Width	3.0	3.0	3.0	3.0	3.0	3.0	
Total Lost time (s)	10.0			10.0	10.0	10.0	
Lane Util. Factor	*0.88			*0.93	1.00	1.00	
Frpb, ped/bikes	0.97			1.00	1.00	0.97	
Flpb, ped/bikes	1.00			0.95	0.69	1.00	
Frt	0.99			1.00	1.00	0.85	
Flt Protected	1.00			0.98	0.95	1.00	
Satd. Flow (prot)	2357			2465	1044	1126	
Flt Permitted	1.00			0.62	0.95	1.00	
Satd. Flow (perm)	2357			1552	1044	1126	
Peak-hour factor, PHF	0.93	0.93	0.93	0.93	0.93	0.93	
Adj. Flow (vph)	430	37	201	238	60	195	
RTOR Reduction (vph)	6	0	0	0	0	0	
Lane Group Flow (vph)	461	0	0	439	60	195	
Confl. Peds. (\#/hr)		160	160		246	8	
Confl. Bikes (\#/hr)		11				8	
Heavy Vehicles (\%)	10\%	0\%	4\%	19\%	0\%	5\%	
Bus Blockages (\#/hr)	22	0	0	0	0	0	
Parking (\#/hr)						0	
Turn Type	NA		pm+pt	NA	Perm	Perm	
Protected Phases	2		8	6			
Permitted Phases			6		7	7	
Actuated Green, G (s)	27.0			48.0	21.0	21.0	
Effective Green, g (s)	28.0			50.0	22.0	22.0	
Actuated g/C Ratio	0.27			0.49	0.22	0.22	
Clearance Time (s)	11.0			11.0	11.0	11.0	
Lane Grp Cap (vph)	647			957	225	242	
v/s Ratio Prot	c0.20			c0.10			
v/s Ratio Perm				0.13	0.06	c0.17	
v/c Ratio	0.71			0.46	0.27	0.81	
Uniform Delay, d1	33.4			17.1	33.3	38.0	
Progression Factor	0.82			0.23	1.00	1.00	
Incremental Delay, d2	6.1			1.2	2.9	24.2	
Delay (s)	33.6			5.2	36.2	62.1	
Level of Service	C			A	D	E	
Approach Delay (s)	33.6			5.2	56.0		
Approach LOS	C			A	E		
Intersection Summary							
HCM 2000 Control Delay			27.8		CM 2000	evel of Service	C
HCM 2000 Volume to Capacity ratio			0.68				
Actuated Cycle Length (s)			102.0		um of los	ime (s)	32.0
Intersection Capacity Utilization			80.8\%		U Level	Service	D
Analysis Period (min)			15				
C Critical Lane Group							

Intersection						
Int Delay, s/veh	2.6					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		¢T	个			
Traffic Vol, veh/h	63	427	246	24	28	58
Future Vol, veh/h	63	427	246	24	28	58
Conflicting Peds, \#/hr	174	0	0	174	11	13
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	-	0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, \%	6	11	12	46	0	3
Mvmt Flow	68	459	265	26	30	62

	4	\rightarrow	\Perp	\pm	4
Lane Group	EBL	EBT	WBT	SBL	SBR
Lane Configurations		* 4	恨	${ }^{7}$	「
Traffic Volume (vph)	114	504	209	53	20
Future Volume (vph)	114	504	209	53	20
Lane Group Flow (vph)	0	687	312	59	22
Turn Type	Perm	NA	NA	Perm	Perm
Protected Phases		2	6		
Permitted Phases	2			8	8
Detector Phase	2	2	6	8	8
Switch Phase					
Minimum Initial (s)	24.0	24.0	24.0	21.0	21.0
Minimum Split (s)	29.7	29.7	29.7	27.1	27.1
Total Split (s)	74.0	74.0	74.0	28.0	28.0
Total Split (\%)	72.5\%	72.5\%	72.5\%	27.5\%	27.5\%
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0
All-Red Time (s)	2.7	2.7	2.7	3.1	3.1
Lost Time Adjust (s)		-1.0	-1.0	-1.0	-1.0
Total Lost Time (s)		4.7	4.7	5.1	5.1
Lead/Lag					
Lead-Lag Optimize?					
Recall Mode	C-Max	C-Max	C-Max	None	None
v/c Ratio		0.50	0.18	0.22	0.08
Control Delay		8.6	6.3	35.7	13.7
Queue Delay		0.0	0.0	0.0	0.0
Total Delay		8.6	6.3	35.7	13.7
Queue Length 50th (m)		35.8	12.2	10.2	0.0
Queue Length 95th (m)		51.5	18.6	22.1	6.6
Internal Link Dist (m)		195.5	184.4	112.1	
Turn Bay Length (m)					35.0
Base Capacity (vph)		1375	1726	273	302
Starvation Cap Reductn		0	0	0	0
Spillback Cap Reductn		0	0	0	0
Storage Cap Reductn		0	0	0	0
Reduced v/c Ratio		0.50	0.18	0.22	0.07

Intersection Summary

Cycle Length: 102
Actuated Cycle Length: 102
Offset: 70 (69\%), Referenced to phase 2:EBTL and 6:WBT, Start of 1st Green
Natural Cycle: 60
Control Type: Actuated-Coordinated

Splits and Phases: 4: Queen St W \& Sorauren Ave

4	\rightarrow	\Perp		\pm	4	
Movement EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	* \uparrow	个\%		${ }^{1}$	「	
Traffic Volume (vph) 114	504	209	72	53	20	
Future Volume (vph) 114	504	209	72	53	20	
Ideal Flow (vphpl) 1900	1900	1900	1900	1900	1900	
Lane Width 3.0	3.0	3.0	3.0	3.0	3.0	
Total Lost time (s)	4.7	4.7		5.1	5.1	
Lane Util. Factor	*0.88	*0.93		1.00	1.00	
Frpb, ped/bikes	1.00	0.96		1.00	0.94	
Flpb, ped/bikes	0.99	1.00		0.93	1.00	
Frt	1.00	0.96		1.00	0.85	
Flt Protected	0.99	1.00		0.95	1.00	
Satd. Flow (prot)	2265	2273		1220	1270	
Flt Permitted	0.80	1.00		0.95	1.00	
Satd. Flow (perm)	1833	2273		1220	1270	
Peak-hour factor, PHF 0.90	0.90	0.90	0.90	0.90	0.90	
Adj. Flow (vph) 127	560	232	80	59	22	
RTOR Reduction (vph) 0	0	22	0	0	18	
Lane Group Flow (vph) 0	687	290	0	59	4	
Confl. Peds. (\#/hr) 55			55	48	34	
Confl. Bikes (\#/hr)			5		3	
Heavy Vehicles (\%) 4\%	10\%	12\%	8\%	4\%	0\%	
Bus Blockages (\#/hr) 0	27	18	0	0	0	
Parking (\#/hr)	0	0		0		
Turn Type Perm	NA	NA		Perm	Perm	
Protected Phases	2	6				
Permitted Phases 2				8	8	
Actuated Green, G (s)	73.4	73.4		16.8	16.8	
Effective Green, g (s)	74.4	74.4		17.8	17.8	
Actuated g/C Ratio	0.73	0.73		0.17	0.17	
Clearance Time (s)	5.7	5.7		6.1	6.1	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	1337	1657		212	221	
v/s Ratio Prot		0.13				
v/s Ratio Perm	c0.37			c0.05	0.00	
v/c Ratio	0.51	0.18		0.28	0.02	
Uniform Delay, d1	6.0	4.3		36.5	34.9	
Progression Factor	1.00	1.57		1.00	1.00	
Incremental Delay, d2	1.4	0.2		0.7	0.0	
Delay (s)	7.4	7.0		37.2	34.9	
Level of Service	A	A		D	C	
Approach Delay (s)	7.4	7.0		36.6		
Approach LOS	A	A		D		
Intersection Summary						
HCM 2000 Control Delay		9.5	HCM 2000 Level of Service			A
HCM 2000 Volume to Capacity ratio		0.47				
Actuated Cycle Length (s)		102.0	Sum of lost time (s)			10.8
Intersection Capacity Utilization		69.6\%	ICU Level of Service			C
Analysis Period (min)		15				

4	\rightarrow	\Perp		\pm	4	
Movement EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	* \uparrow	个\%		${ }^{1}$	「	
Traffic Volume (vph) 114	504	209	72	53	20	
Future Volume (vph) 114	504	209	72	53	20	
Ideal Flow (vphpl) 1900	1900	1900	1900	1900	1900	
Lane Width 3.0	3.0	3.0	3.0	3.0	3.0	
Total Lost time (s)	4.7	4.7		5.1	5.1	
Lane Util. Factor	*0.88	*0.93		1.00	1.00	
Frpb, ped/bikes	1.00	0.96		1.00	0.94	
Flpb, ped/bikes	0.99	1.00		0.93	1.00	
Frt	1.00	0.96		1.00	0.85	
Flt Protected	0.99	1.00		0.95	1.00	
Satd. Flow (prot)	2265	2273		1220	1270	
Flt Permitted	0.80	1.00		0.95	1.00	
Satd. Flow (perm)	1833	2273		1220	1270	
Peak-hour factor, PHF 0.90	0.90	0.90	0.90	0.90	0.90	
Adj. Flow (vph) 127	560	232	80	59	22	
RTOR Reduction (vph) 0	0	22	0	0	18	
Lane Group Flow (vph) 0	687	290	0	59	4	
Confl. Peds. (\#/hr) 55			55	48	34	
Confl. Bikes (\#/hr)			5		3	
Heavy Vehicles (\%) 4\%	10\%	12\%	8\%	4\%	0\%	
Bus Blockages (\#/hr) 0	27	18	0	0	0	
Parking (\#/hr)	0	0		0		
Turn Type Perm	NA	NA		Perm	Perm	
Protected Phases	2	6				
Permitted Phases 2				8	8	
Actuated Green, G (s)	73.4	73.4		16.8	16.8	
Effective Green, g (s)	74.4	74.4		17.8	17.8	
Actuated g/C Ratio	0.73	0.73		0.17	0.17	
Clearance Time (s)	5.7	5.7		6.1	6.1	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	1337	1657		212	221	
v/s Ratio Prot		0.13				
v/s Ratio Perm	c0.37			c0.05	0.00	
v/c Ratio	0.51	0.18		0.28	0.02	
Uniform Delay, d1	6.0	4.3		36.5	34.9	
Progression Factor	1.00	1.57		1.00	1.00	
Incremental Delay, d2	1.4	0.2		0.7	0.0	
Delay (s)	7.4	7.0		37.2	34.9	
Level of Service	A	A		D	C	
Approach Delay (s)	7.4	7.0		36.6		
Approach LOS	A	A		D		
Intersection Summary						
HCM 2000 Control Delay		9.5	HCM 2000 Level of Service			A
HCM 2000 Volume to Capacity ratio		0.47				
Actuated Cycle Length (s)		102.0	Sum of lost time (s)			10.8
Intersection Capacity Utilization		69.6\%	ICU Level of Service			C
Analysis Period (min)		15				

c Critical Lane Group

Major/Minor M	Major1		Major2		Minor1	
Conflicting Flow All	0	0	609	0	779	354
Stage 1	-		-	-	609	-
Stage 2	-	-	-	-	170	-
Critical Hdwy	-	-	4.14	-	6.84	6.94
Critical Hdwy Stg 1	-	-	-	-	5.84	-
Critical Hdwy Stg 2	-	-	-	-	5.84	-
Follow-up Hdwy	-	-	2.22	-	3.52	3.32
Pot Cap-1 Maneuver	-	-	966	-	333	642
Stage 1	-	-	-	-	505	-
Stage 2	-	-	-	-	843	-
Platoon blocked, \%	-	-		-		
Mov Cap-1 Maneuver	-	-	899	-	309	598
Mov Cap-2 Maneuver	-	-	-	-	309	-
Stage 1	-	-	-	-	470	-
Stage 2	-	-	-	-	840	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.1		11.8	
HCM LOS					B	
Minor Lane/Major Mvmt		NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		556	-	-	899	-
HCM Lane V/C Ratio		0.049	-	-	0.004	-
HCM Control Delay (s)		11.8	-	-	9	0
HCM Lane LOS		B	-	-	A	A
HCM 95th \%tile Q(veh)		0.2	-	-	0	-

PM Peak Hour

Cycle Length: 102
Actuated Cycle Length: 102
Offset: 47 (46\%), Referenced to phase 2:EBTL and 6:WBT, Start of 1st Green
Natural Cycle: 100
Control Type: Pretimed
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
m Volume for 95 th percentile queue is metered by upstream signal.
Splits and Phases: 1: Queen St W \& Lansdowne Ave

Cycle Length: 102
Actuated Cycle Length: 102
Offset: 47 (46\%), Referenced to phase 2:EBTL and 6:WBT, Start of 1st Green
Natural Cycle: 100
Control Type: Pretimed
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 2: Jameson Ave \& Queen St W

	\rightarrow	\%	7		4	\%	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	性			${ }^{\text {¢ }}$ ¢	*	「	
Traffic Volume (vph)	346	34	164	385	88	256	
Future Volume (vph)	346	34	164	385	88	256	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	2100	
Lane Width	3.0	3.0	3.0	3.0	3.0	3.0	
Total Lost time (s)	10.0			10.0	10.0	9.0	
Lane Util. Factor	*0.94			*0.99	1.00	1.00	
Frpb, ped/bikes	0.95			1.00	1.00	0.97	
Flpb, ped/bikes	1.00			0.94	0.67	1.00	
Frt	0.99			1.00	1.00	0.85	
Flt Protected	1.00			0.99	0.95	1.00	
Satd. Flow (prot)	2577			2735	987	1296	
Flt Permitted	1.00			0.72	0.95	1.00	
Satd. Flow (perm)	2577			1995	987	1296	
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	
Adj. Flow (vph)	368	36	174	410	94	272	
RTOR Reduction (vph)	7	0	0	0	0	0	
Lane Group Flow (vph)	397	0	0	584	94	272	
Confl. Peds. (\#/hr)		298	298		308	9	
Confl. Bikes (\#/hr)		15				5	
Heavy Vehicles (\%)	6\%	3\%	1\%	9\%	3\%	1\%	
Bus Blockages (\#/hr)	16	0	0	0	0	0	
Parking (\#/hr)						0	
Turn Type	NA		pm+pt	NA	Perm	Perm	
Protected Phases	2		8	6			
Permitted Phases			6		7	7	
Actuated Green, G (s)	27.0			48.0	21.0	21.0	
Effective Green, g (s)	28.0			50.0	22.0	23.0	
Actuated g/C Ratio	0.27			0.49	0.22	0.23	
Clearance Time (s)	11.0			11.0	11.0	11.0	
Lane Grp Cap (vph)	707			1137	212	292	
v/s Ratio Prot	c0.15			c0.11			
v/s Ratio Perm				0.14	0.10	c0.21	
v/c Ratio	0.56			0.51	0.44	0.93	
Uniform Delay, d1	31.7			17.7	34.7	38.7	
Progression Factor	0.81			0.27	1.00	1.00	
Incremental Delay, d2	3.0			1.2	6.6	37.7	
Delay (s)	28.8			5.9	41.3	76.4	
Level of Service	C			A	D	E	
Approach Delay (s)	28.8			5.9	67.4		
Approach LOS	C			A	E		
Intersection Summary							
HCM 2000 Control Delay			29.4		HCM 2000	evel of Service	C
HCM 2000 Volume to Capacity ratio			0.69				
Actuated Cycle Length (s)			102.0		Sum of los	ime (s)	32.0
Intersection Capacity Utilization			80.8\%		CU Level	Service	D
Analysis Period (min)			15				
c Critical Lane Group							

Intersection						
Int Delay, s/veh	3.5					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		* ${ }^{\text {¢ }}$	1\%		M	
Traffic Vol, veh/h	74	365	434	31	10	95
Future Vol, veh/h	74	365	434	31	10	95
Conflicting Peds, \#/hr	266	0	0	266	15	30
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	\#	0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	0	6	6	29	10	3
Mvmt Flow	80	397	472	34	11	103

Major/Minor M	Major1		Major2		Minor2	
Conflicting Flow All	772	0		0	1129	549
Stage 1	-	-	- -	-	755	-
Stage 2	-	-	- -	-	374	-
Critical Hdwy	4.1	-	-	-	7	6.96
Critical Hdwy Stg 1	-	-	- -	-	6	-
Critical Hdwy Stg 2	-	-	- -	-	6	-
Follow-up Hdwy	2.2	-	- -	-	3.6	3.33
Pot Cap-1 Maneuver	852	-	- -	-	186	477
Stage 1	-	-	- -	-	405	-
Stage 2	-	-	- -	-	643	-
Platoon blocked, \%		-	- -	-		
Mov Cap-1 Maneuver	692	-	- -	-	105	379
Mov Cap-2 Maneuver	-	-	- -	-	105	-
Stage 1	-	-	- -	-	280	-
Stage 2	-	-	- -	-	522	-
Approach	EB		WB		SB	
HCM Control Delay, s	2.3		0		23.8	
HCM LOS					C	
Minor Lane/Major Mvmt		EBL	EBT	WBT	WBR SBLn1	
Capacity (veh/h)		692	析	-	-	304
HCM Lane V/C Ratio		0.116	-	-	-	0.375
HCM Control Delay (s)		10.9	0.6	-	-	23.8
HCM Lane LOS		B	- A	-	-	C
HCM 95th \%tile Q(veh)		0.4	,	-	-	1.7

Cycle Length: 102
Actuated Cycle Length: 102
Offset: 19 (19\%), Referenced to phase 2:EBTL and 6:WBT, Start of 1st Green
Natural Cycle: 60
Control Type: Actuated-Coordinated

Splits and Phases: 4: Queen St W \& Sorauren Ave

4	\rightarrow	\Perp		\pm	4	
Movement EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	* \uparrow	个\%		${ }^{1}$	「	
Traffic Volume (vph) 133	452	362	127	46	26	
Future Volume (vph) 133	452	362	127	46	26	
Ideal Flow (vphpl) 1900	1900	1900	1900	1900	1900	
Lane Width 3.0	3.0	3.0	3.0	3.0	3.0	
Total Lost time (s)	4.7	4.7		5.1	5.1	
Lane Util. Factor	*0.94	*0.99		1.00	1.00	
Frpb, ped/bikes	1.00	0.96		1.00	0.90	
Flpb, ped/bikes	0.98	1.00		0.89	1.00	
Frt	1.00	0.96		1.00	0.85	
Flt Protected	0.99	1.00		0.95	1.00	
Satd. Flow (prot)	2586	2496		1217	1220	
Flt Permitted	0.72	1.00		0.95	1.00	
Satd. Flow (perm)	1891	2496		1217	1220	
Peak-hour factor, PHF 0.95	0.95	0.95	0.95	0.95	0.95	
Adj. Flow (vph) 140	476	381	134	48	27	
RTOR Reduction (vph) 0	0	32	0	0	22	
Lane Group Flow (vph) 0	616	483	0	48	5	
Confl. Peds. (\#/hr) 65			65	74	59	
Confl. Bikes (\#/hr)			21		4	
Heavy Vehicles (\%) 0\%	5\%	8\%	2\%	0\%	0\%	
Bus Blockages (\#/hr) 0	16	19	0	0	0	
Parking (\#/hr)	0	0		0		
Turn Type Perm	NA	NA		Perm	Perm	
Protected Phases	2	6				
Permitted Phases 2				8	8	
Actuated Green, G (s)	73.4	73.4		16.8	16.8	
Effective Green, g (s)	74.4	74.4		17.8	17.8	
Actuated g/C Ratio	0.73	0.73		0.17	0.17	
Clearance Time (s)	5.7	5.7		6.1	6.1	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	1379	1820		212	212	
v/s Ratio Prot		0.19				
v/s Ratio Perm	c0.33			c0.04	0.00	
v/c Ratio	0.45	0.27		0.23	0.02	
Uniform Delay, d1	5.5	4.6		36.2	34.9	
Progression Factor	1.00	1.58		1.00	1.00	
Incremental Delay, d2	1.0	0.3		0.5	0.0	
Delay (s)	6.6	7.6		36.7	34.9	
Level of Service	A	A		D	C	
Approach Delay (s)	6.6	7.6		36.1		
Approach LOS	A	A		D		
Intersection Summary						
HCM 2000 Control Delay		8.9	HCM 2000 Level of Service			A
HCM 2000 Volume to Capacity ratio		0.41				
Actuated Cycle Length (s)		102.0	Sum of lost time (s)			10.8
Intersection Capacity Utilization		69.6\%	ICU Level of Service			C
Analysis Period (min)		15				

c Critical Lane Group

Intersection						
Int Delay, s/veh	0.4					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	16			$\mathbf{4 \uparrow}$	Mr	
Traffic Vol, veh/h	437	4	20	514	1	7
Future Vol, veh/h	437	4	20	514	1	7
Conflicting Peds, \#/hr	0	198	198	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	475	4	22	559	1	8

Major/Minor M	Major1		Major2		Minor1	
Conflicting Flow All	0	0	677	0	999	438
Stage 1	-		-	-	675	-
Stage 2	-	-	-	-	324	-
Critical Hdwy	-	-	4.14	-	6.84	6.94
Critical Hdwy Stg 1	-	-	-	-	5.84	-
Critical Hdwy Stg 2	-	-	-	-	5.84	-
Follow-up Hdwy	-	-	2.22	-	3.52	3.32
Pot Cap-1 Maneuver	-	-	911	-	240	567
Stage 1	-	-	-	-	467	-
Stage 2	-	-	-	-	705	-
Platoon blocked, \%	-	-		-		
Mov Cap-1 Maneuver	-	-	784	-	198	488
Mov Cap-2 Maneuver	-	-	-	-	198	-
Stage 1	-	-	-	-	402	-
Stage 2	-	-	-	-	676	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.6		13.9	
HCM LOS					B	
Minor Lane/Major Mvmt		NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		412	-	-	784	-
HCM Lane V/C Ratio		0.021	-	-	0.028	-
HCM Control Delay (s)		13.9	-	-	9.7	0.2
HCM Lane LOS		B	-	-	A	A
HCM 95th \%tile Q(veh)		0.1	-	-	0.1	-

APPENDIX K
MMLOS Guidelines

Exhibit 16 - TLOS Signalized Intersection Evaluation Table

Delay	Typical Location	LOS
0	Grade Separation	A
$\leq 10 \mathrm{sec}$	High Level TSP	B
$\leq 20 \mathrm{sec}$		C
$\leq 30 \mathrm{sec}$		D
$\leq 40 \mathrm{sec}$	TSP \& long cycle length	E
$>40 \mathrm{sec}$	No TSP \& long cycle length	F

Note: Delay includes travel time from end of queue to entering the intersection

5 Truck Level of Service (TkLOS)

5.1 Intent

Motor vehicle LOS accounts for trucks by considering the percent of trucks and buses in the traffic volume. However, some elements of roadway segments and intersections clearly affect the ability of trucks to operate with ease. The intent of the truck level of service (TkLOS) is to complement motor vehicle LOS by considering the physical space available for trucks to negotiate corners quickly and easily, and to operate safely within travelled lanes.

The objective of evaluating TkLOS is to facilitate goods movement within the City of Ottawa however, unlike other modes, the TkLOS need only be applied along truck routes, arterial roads and key delivery access routes, since trucks are not intended to operate on every street. An exception would be within employment or enterprise areas where targets are set for trucks on all streets in these areas, as laid out in Section 7.

Care should be taken when considering the trade-offs between truck level of service and pedestrian/bicycle level of service with respect to the corner radii and turning speed. There is potential for trucks to encroach on pedestrian and cycling facilities if trucks are not accommodated appropriately, which can put vulnerable users at risk. As mentioned in Section 1.2, the MMLOS guidelines do not replace safety or geometric guidance.

5.2 Data Requirements

A summary of the data required to evaluate the truck level of service is provided in Exhibit 17.
Exhibit 17 - Data Requirements for Truck Level of Service

SEGMENTS

SIGNALIZED INTERSECTIONS

"	Street width (number of through lanes per direction)
»	Curb lane width (m)

» Effective radius
» Number of receiving lanes on departing leg

Note that effective radius is the same as corner radius where trucks must turn from the curbside lane into a departing curbside lane, however where parking lanes or on-street parking lanes are provided adjacent to the travel / turn lanes the effective radius can be determined by placing a simple or compound radius between the edge of the travel lane on the approach and departing legs - refer to Exhibit 18 below.

		Existing				FUTURE BACKGROUND				FUTURE TOTAL			
Signalized Intersection	Side of Intersection	AM Delay (sec)	PM Delay (sec)	Worst Delay (sec)	tlos	AM Delay (sec)	PM Delay (sec)	Worst Delay (sec)	tos	AM Delay (sec)	PM Delay (sec)	Worst Delay (sec)	tos
Lansdowne Ave \& Queen St W	North	52	54	54	F	52	54	54	F	52	55	55	F
	South		-			-
	East	36	38	38	E	37	38	38	E	37	39	39	E
	West	-	-	-	-	$-$	-	-	.	-	\cdots	-	-
Jameson Ave \& Queen St W	North	.	.	-	-	.	.	-	.	-	-	-	-
	South	-	-	-	.	-	.	.	-	-	-	.	.
	East	.	.		-	.	.	-	.	-	.	-	-
	West	32	27	32	E	32	29	32	E	34	29	34	E

Exhibit 4 - PLOS Segment Evaluation Table

Sidewalk Width (m)	Boulevard Width (m)	Motor Vehicle Traffic Volume (AADT)	Presence of Onstreet Parking	Segment PLOS			
				Operating Speed (km/h)			
				≤ 30	>30 or 50	>50 or 60	$>60{ }^{1}$
2.0 or more	>2	≤ 3000	N/A	A	A	A	B
		> 3000	Yes	A	B	B	N/A
			No	A	B	C	D
	0.5 to 2	≤ 3000	N/A	A	A	A	B
		> 3000	Yes	A	B	C	N/A
			No	A	C	D	E
	0	≤ 3000	NA	A	B	C	D
		> 3000	Yes	B	B	D	N/A
			No	B	C	E	F
1.8	>2	≤ 3000	N/A	A	A	A	B
		> 3000	Yes	A	B	C	N/A
			No	A	C	D	E
	0.5 to 2	≤ 3000	N/A	A	B	B	D
		> 3000	Yes	A	C	C	N/A
			No	B	C	E	E
	0	≤ 3000	N/A	A	B	C	D
		> 3000	Yes	B	C	D	N/A
			No	C	D	F	F
1.5	>2	≤ 3000	N/A	C	C	C	C
		> 3000	Yes	C	C	D	N/A
			No	C	D	E	E
	0.5 to 2	≤ 3000	N/A	C	C	C	D
		> 3000	Yes	C	C	D	N/A
			No	D	E	E	E
	0	N/A		D	E	F^{2}	F^{2}
<1.5	N/A			F^{3}	F^{3}	F^{3}	F^{3}
No sidewalk	N/A			C^{4}	F^{3}	F^{3}	F^{3}

Notes:

1. On-street parking not provided on roadways with posted speed of $70 \mathrm{~km} / \mathrm{h}$ or more
2. Sidewalk must be 1.8 m wide if no separation is provided (curb-face sidewalk) where speeds are high
3. Sidewalk must be 1.5 m wide to meet Provincial accessiblity standards
4. Ottawa Pedestrian Plan, 2014: "all new and reconstructed urban local roads where pedestrian facilities are required in accordance with these policies but no dedicated pedestrian facility is provided, require that roads be designed for a speed of $30 \mathrm{~km} / \mathrm{h}$ or lower (pending development of a new $30 \mathrm{~km} / \mathrm{h}$ roadway design standard)." Where a roadway is specifically designed as 'shared space', with appropriate design controls and features, it can achieve LOS A.
5. Where a multi-use path is provided in lieu of sidewalks, the MUP can be evaluated using the same methodology.

Exhibit 11 - BLOS Segment Evaluation Table

Type of Bikeway		LOS
Physically Separated Bikeway (cycle tracks, protected bike lanes and multi-use paths). Physical separation refers to, but is not limited to, curbs, raised medians, bollards and parking lanes (adjacent to the bike lane along the travelled way i.e. not curbside).		A
Bike Lanes Not Adjacent Parking Lane - Select Worst Scoring Criteria		
No. of Travel Lanes	1 travel lane in each direction	A
	2 travel lanes in each direction separated by a raised median	B
	2 travel lanes in each direction without a separating median	C
	More than 2 travel lanes in each direction	D
Bike Lane Width	$\geq 1.8 \mathrm{~m}$ wide bike lane (includes marked buffer and paved gutter width)	A
	$\geq 1.5 \mathrm{~m}$ to $<1.8 \mathrm{~m}$ wide bike lane (includes marked buffer and paved gutter width)	B
	$\geq 1.2 \mathrm{~m}$ to $<1.5 \mathrm{~m}$ wide bike lane (includes marked buffer and paved gutter width)	C
Operating Speed	$\leq 50 \mathrm{~km} / \mathrm{h}$ operating speed	A
	$60 \mathrm{~km} / \mathrm{h}$ operating speed	C
	$\geq 70 \mathrm{~km} / \mathrm{h}$ operating speed	E
Bike lane blockage (commercial areas)	Rare	A
	Frequent	C
Bike Lanes Adjacent to curbside Parking Lane - Select Worst Scoring Criteria		
No. of Travel Lanes	1 travel lane in each direction	A
	2 or more travel lanes in each direction	C
Bike Lane and Parking Lane Width	4.5 m wide bike lane plus parking lane (includes marked buffer and paved gutter width)	A
	4.25 m wide bike lane plus parking lane (includes marked buffer and paved gutter width)	B
	$\leq 4.0 \mathrm{~m}$ wide bike lane plus parking lane (includes marked buffer and paved gutter width)	C
Operating Speed	$\leq 40 \mathrm{~km} / \mathrm{h}$ operating speed	A
	$50 \mathrm{~km} / \mathrm{h}$ operating speed	B
	$60 \mathrm{~km} / \mathrm{h}$ operating speed	D
	$\geq 70 \mathrm{~km} / \mathrm{h}$ operating speed	F
Bike lane blockage (commercial areas)	Rare	A
	Frequent	C
Mixed Traffic		
No. of Travel Lanes and Operating Speed	2 travel lanes; $\leq 40 \mathrm{~km} / \mathrm{h}$; no marked centerline or classified as residential	A
	2 to 3 travel lanes; $\leq 40 \mathrm{~km} / \mathrm{h}$	B
	2 travel lanes; $50 \mathrm{~km} / \mathrm{h}$; no marked centerline or classified as residential	B
	2 to 3 travel lanes; $50 \mathrm{~km} / \mathrm{h}$	D
	44 to 5 travel lanes; $\leq 40 \mathrm{~km} / \mathrm{h}$	D
	4 to 5 travel lanes; $\geq 50 \mathrm{~km} / \mathrm{h}$	E
	6 or more travel lanes; $\leq 40 \mathrm{~km} / \mathrm{h}$	E
	$\geq 60 \mathrm{~km} / \mathrm{h}$	F
Unsignalized Crossing along Route: no median refuge		
No. of Travel Lanes on Side Street and Operating Speed	3 or less lanes being crossed; $\leq 40 \mathrm{~km} / \mathrm{h}$	A
	4 to 5 lanes being crossed; $\leq 40 \mathrm{~km} / \mathrm{h}$	B
	3 or less lanes being crossed; $50 \mathrm{~km} / \mathrm{h}$	B
	4 to 5 lanes being crossed; $50 \mathrm{~km} / \mathrm{h}$	C
	3 or less lanes being crossed; $60 \mathrm{~km} / \mathrm{h}$	C
	4 to 5 lanes being crossed; $60 \mathrm{~km} / \mathrm{h}$	D
	6 or more lanes being crossed; $\leq 40 \mathrm{~km} / \mathrm{h}$	E
	3 or less lanes being crossed; $\geq 65 \mathrm{~km} / \mathrm{h}$	E
	6 or more lanes being crossed; $\geq 50 \mathrm{~km} / \mathrm{h}$	F
	4 to 5 lanes being crossed; $\geq 65 \mathrm{~km} / \mathrm{h}$	F
Unsignalized Crossing along Route: with median refuge ($\geq 1.8 \mathrm{~m}$ wide)		
No. of Travel Lanes on Side Street and Operating Speed	5 or less lanes being crossed; $\leq 40 \mathrm{~km} / \mathrm{h}$	A
	3 or less lanes being crossed; $50 \mathrm{~km} / \mathrm{h}$	A
	6 or more lanes being crossed; $\leq 40 \mathrm{~km} / \mathrm{h}$	B
	4 to 5 lanes being crossed; $50 \mathrm{~km} / \mathrm{h}$	B
	3 or less lanes being crossed; $60 \mathrm{~km} / \mathrm{h}$	B
	6 or more lanes being crossed; $50 \mathrm{~km} / \mathrm{h}$	C
	4 to 5 lanes being crossed; $60 \mathrm{~km} / \mathrm{h}$	C
	3 or less lanes being crossed; $\geq 65 \mathrm{~km} / \mathrm{h}$	D
	6 or more lanes being crossed; $60 \mathrm{~km} / \mathrm{h}$	E
	4 to 5 lanes being crossed; $\geq 65 \mathrm{~km} / \mathrm{h}$	E
	6 or more lanes being crossed; $\geq 65 \mathrm{~km} / \mathrm{h}$	F

Segment	From	To	Side	Type	No. of Lanes	Operating Speed	No Centreline/Residential?	Segment BLOS
Queen St W	Macdonell Ave	Lansdowne Ave	North	Mixed Traffic	4	Less than or equal to $40 \mathrm{~km} / \mathrm{h}$	N/A	D
			South	Mixed Traffic	4	Less than or equal to $40 \mathrm{~km} / \mathrm{h}$	N/A	D

Future (per City's Cycling Network Plan):
-None planned along Queen St W

Mon Mar 272023 22:08:15 GMT-0400 (Eastern Daylight Time) - Run Time: 984 ms
Cross Tabulation Query Form - Transit - 2016 v1.1
Row: Planning district of transit egress pt. - pd_egrs

Filters
2006 GTA zone of origin - gta06 orig In 89, 109, 110, 113
and
Trip pu
and
Start time of trip - start_time In 600-1000)
Tran 20

PD 1 of Toronto
PD 2 of Toronto
PD 3 of Toronto
PD 4 of Toronto
PD 5 of Toronto
PD 6 of Toronto
PD 7 of Toronto
PD8 of Toronto
PD 9 of Toronto
PD 10 of Toronto
PD 11 of Toronto
PD 11 of Toronto
PD 12 of Toronto
PD 15 of Toronto
Richmond Hill
Markham
Markham
Mississauga
Milton

Oakville | | | 0 | 0 |
| :---: | :---: | :---: | :---: |
| Oakville | | 14 | 0 |
| | SUM | 163 | 123 |

Summary by Route		
Transit Route	Trips	\%
TTC Bus		
29 Dufferin	632	7\%
47 Caledonia	548	6\%
63 Oakwood	842	9\%
80 Parkside	96	1\%
TC Wheel Trans	6	0\%
509 Harbourfront Bus	105	1\%
TTC Streetcar		
501 Queen Streetcar	803	8\%
504 King Streetcar	6002	63\%
505 Dundas Streetcar	141	1\%
506 College / Carloton Streetcar	57	1\%
511 Bathurst Streetcar	27	0\%
Cherry Streetcar	173	2\%
TTC Subway		
Yonge-University West	20	0\%
Bloor Danforth	110	1\%
GO		
GO-Lakeshore West	123	1\%
60-Kitchener	13	0\%
total	9525	100\%

APPENDIX L
Functional Design Review

[^0]: (1) Total pedestrian trips from the proxy survey rates includes both transit trips and walk only trips. Local mode split data from the 2016 TTS indicated that transit trips make up 76% of the total transit + walk only trips. This was used to separate out the pedestrian trips into transit trips and walk only trips.

