Manufactured Treatment Device Summary Form

M TORONTO

General Information					
Project Name: 1437-1455 Queen Street West					
Site Location: 1437-1455 Queen Street West, Toronto, ON					
MTD Structure ID: Click here to enter text.					
Site Design Characteristics					
Total Project Area [ha]: 0.3209 ha					
Catchment Area to MTD [ha]:0.3093 ha					
% Impervious of Catchment Area: 75%					
Design Requirement - SWM Background					
Application: 🏹 Standalone 🗆 Treatment Train / Multi-Component					
Water Quality Target (%): Site-Wide: 80% TSS Removal DMTD-Specific: Click here to enter text.					
Location: □ No U/S or D/S SWM Detention √ U/S of SWM Detention □ D/S of SWM Detention					
General MTD Information					
Type: 🗆 Oil-Grit Separator 💋 Filter Device					
Proposed Model Name / Number: SFPD0612 Vault c/w StormFilter 27" Cartridges					
Tested Model Name / Number: Stormfilter					
Testing / Verification / Certification [select one]					
□ [For OGS] Canada ETV OGS Lab Protocol + ISO 14034: ETV Verification					
□ [For Filter Device] TAPE Field Test Protocol ¹ + TAPE Certification					
[For Filter Device] TAPE Field Test Protocol ¹ + ISO 14034: ETV Verification					
Scaling [applicable where proposed model is not the same as tested model]					
Scaling Provisions Met					
MTD Characteristics					
Diameter [m]: - Surface Area [m2]: ^{(3,34}					
Box Height / Width [m]: 1.8m(W)x3.66m(L)(t. Treatment Depth ³ [m] invert					
Depth ² [m]: 0 Sediment Storage Capacity ⁴ [L]: ¹²¹⁵					
Internal Weir Height [m]: 0.91 Total Storage Capacity [L]: (4365					
Oil Storage Capacity [L]: Max Treatment Rate [L/s]: 13.1					
□ [For OGS] Sizing and Performance Evaluation					
Design Treatment Flows ⁵ : to [L/s]					
Design Surface Loading Rates⁵: to [L/min/m2]					
Removal Efficiency⁵: to [%]					
Total Annual Volume-Weighted Removal Efficiency [%]: Click here to enter text.					
Annual Sediment Loading Volume [L]: Click here to enter text.					

Manufactured Treatment Device Summary Form

M TORONTO

[For Filter] Sizing and Performance Evaluation
Design Treatment Flow (90% Annual Rainfall Volume Capture) [L/s]13.1 L/s
Removal Efficiency [%]: 80%
Installation Configuration [select Option A, B or C]
A. Inline OGS
□ Internal By-pass Capacity > Inlet Pipe Capacity minus 90% Annual Rainfall Flow Rate; and
□ Internal By-pass Capacity > Inlet Pipe Capacity minus Maximum Scour Flow Rate; and
□ Maximum Scour Concentration at Maximum Tested Scour Flow Rate <= 25mg/L
B. Inline Filter
Internal By-pass Capacity > Inlet Pipe Capacity minus 90% Annual Rainfall Flow Rate
C. Off-line OGS or Filter
□ Diversion By-pass Capacity > Inlet Pipe Capacity minus 90% Annual Rainfall Flow Rate
Operations & Maintenance
□ [For OGS] Provided MTD Storage Capacity > Annual Sediment Loading Volume
[For Filter Device] Manufacturer Designed and Recommended Maintenance Interval:1 year
Attachments with SWM Report [select all applicable]
MID Engineering Drawings
MID Engineering Drawings
MID Engineering Drawings Verification Statements/Certification Report I MTD Sizing and Performance Calculation Sheet
MID Engineering Drawings ✓ Verification Statements/Certification Report □ MTD Sizing and Performance Calculation Sheet □ Hydraulic Calculations for Inline/Offline Installation
 MID Engineering Drawings Verification Statements/Certification Report MTD Sizing and Performance Calculation Sheet Hydraulic Calculations for Inline/Offline Installation Operations & Maintenance Manual
 MID Engineering Drawings Verification Statements/Certification Report MTD Sizing and Performance Calculation Sheet Hydraulic Calculations for Inline/Offline Installation Operations & Maintenance Manual Other; Specify: Click here to enter text.
 MID Engineering Drawings Verification Statements/Certification Report MTD Sizing and Performance Calculation Sheet Hydraulic Calculations for Inline/Offline Installation Operations & Maintenance Manual Other; Specify: Click here to enter text.
 MID Engineering Drawings Verification Statements/Certification Report MTD Sizing and Performance Calculation Sheet Hydraulic Calculations for Inline/Offline Installation Operations & Maintenance Manual Other; Specify: Click here to enter text.
 MID Engineering Drawings Verification Statements/Certification Report MTD Sizing and Performance Calculation Sheet Hydraulic Calculations for Inline/Offline Installation Operations & Maintenance Manual Other; Specify: Click here to enter text.
 MID Engineering Drawings ✓ Verification Statements/Certification Report □ MTD Sizing and Performance Calculation Sheet □ Hydraulic Calculations for Inline/Offline Installation ✓ Operations & Maintenance Manual □ Other; Specify: Click here to enter text.
 MID Engineering Drawings ✓ Verification Statements/Certification Report □ MTD Sizing and Performance Calculation Sheet □ Hydraulic Calculations for Inline/Offline Installation ✓ Operations & Maintenance Manual □ Other; Specify: Click here to enter text.
MID Engineering Drawings Verification Statements/Certification Report MTD Sizing and Performance Calculation Sheet Hydraulic Calculations for Inline/Offline Installation Operations & Maintenance Manual Other; Specify: Click here to enter text.
 MID Engineering Drawings ✓ Verification Statements/Certification Report IMTD Sizing and Performance Calculation Sheet Hydraulic Calculations for Inline/Offline Installation ✓ Operations & Maintenance Manual Other; Specify: Click here to enter text.

Note: MTD Summary Form to completed in accordance with Design Criteria for MTDs and appended as part of Stormwater Management Report

- 1. Includes capture of min 3 events with rainfall intensity and depth corresponding to 90% average annual rainfall volume
- 2. Chamber depth is measured from the outlet invert to the bottom of the device.
- 3. Maximum Treatment Depth = Chamber Depth minus 50% of Maximum Sediment Storage Depth
- 4. Measured from the bottom of the device to manufacturer-recommended sediment cleanout depth

^{5.} Calculated range for design intensities corresponding from 10% to 100% of Annual Rainfall Volume Captured

Determining Number of Cartridges for Flow Based Systems

13/04/2023 Black Cells = Calculation

Date	13/04/2023	Black Cells
Site Information		
Project Name	1437-1455 Queen Stre	et West
Project Location	Toronto, ON	
OGS ID	OGS	
Drainage Area, Ad	0.79 ac	(0.32 ha)
Impervious Area, Ai	0.59 ac	
Pervious Area, Ap	0.20	
% Impervious	75%	
Runoff Coefficient, Rc	0.74	
Treatment storm flow rate, Q _{treat}	0.46 cfs	(13.1 L/s)
Peak storm flow rate, Q _{peak}	TBD cfs	
Filtor System		

Filter System

Filtration brand Cartridge height Specific Flow Rate Flow rate per cartridge

StormFilter

27 in 1.67 gpm/ft² 18.79 gpm

SUMMARY

Number of Cartridges	12
Media Type	Phosphosorb

Event Mean Concentration (EMC) Annual TSS Removal Percent Runoff Capture

150 mg/L 80% 90%

Recommend SFPD0612 vault or CIP

200 Enterprise Drive Scarborough, ME 04074 Phone 877-907-8676 Fax 207-885-9825

The Stormwater Manage StormFilter*

THIS PRODUCT MAY BE PROTECTED BY ONE OR MORE OF THE FOLLOWING U.S. PATENTS: 5,322,629,5,524,576,5,707,527,5,985,157,6,027,639,6649,048; RELATED FOREIGN PATENTS, OR OTHER PATENTS PENDING.

FRAME AND GRATE

(24" SQUARE) (NOT TO SCALE)

(30" ROUND)

(NOT TO SCALE)

PERFORMANCE SPECIFICATION FILTER CARTRIDGES SHALL BE MEDIA-FILLED, PASSIVE, SIPHON ACTUATED, RADIAL FLOW, AND SELF CLEANING. RADIAL MEDIA DEPTH SHALL BE 7" [178]. FILTER MEDIA CONTACT TIME SHALL BE AT LEAST 37 SECONDS. SPECIFIC FLOW RATE SHALL BE 2 GPM/SF [1.36 L/s/m²] (MAXIMUM). SPECIFIC FLOW RATE IS THE MEASURE OF THE FLOW (GPM) DIVIDED BY THE MEDIA SURFACE CONTACT AREA (SF). MEDIA VOLUMETRIC FLOW RATE SHALL BE 6 GPM/CF [13.39 L/s/m³] OF MEDIA (MAXIMUM).

GENERAL NOTES

- 1. CONTECH TO PROVIDE ALL MATERIALS UNLESS NOTED OTHERWISE
- 2. DIMENSIONS MARKED WITH () ARE REFERENCE DIMENSIONS. ACTUAL DIMENSIONS MAY VARY.
- 3. ALTERNATE DIMENSIONS ARE IN MILLIMETERS [mm] UNLESS NOTED OTHERWISE.
- 4. FOR FABRICATION DRAWINGS WITH DETAILED STRUCTURE DIMENSIONS AND WEIGHTS, PLEASE CONTACT YOUR CONTECH REPRESENTATIVE. www.ContechES.com
- 5. STORMFILTER WATER QUALITY STRUCTURE SHALL BE IN ACCORDANCE WITH ALL DESIGN DATA AND INFORMATION CONTAINED IN THIS DRAWING. CONTRACTOR TO CONFIRM STRUCTURE MEETS REQUIREMENTS OF PROJECT.
- BELOW, THE OUTLET PIPE INVERT ELEVATION. ENGINEER OF RECORD TO CONFIRM ACTUAL GROUNDWATER ELEVATION. CASTINGS SHALL MEET AASHTO M306 AND BE CAST WITH THE CONTECH LOGO.

INSTALLATION NOTES

- A. ANY SUB-BASE, BACKFILL DEPTH, AND/OR ANTI-FLOTATION PROVISIONS ARE SITE-SPECIFIC DESIGN CONSIDERATIONS AND SHALL BE SPECIFIED BY ENGINEER OF RECORD.
- C. CONTRACTOR TO INSTALL JOINT SEALANT BETWEEN ALL SECTIONS AND ASSEMBLE STRUCTURE.
- D. CONTRACTOR TO PROVIDE, INSTALL, AND GROUT PIPES. MATCH OUTLET PIPE INVERT WITH OUTLET BAY FLOOR

- STORMFILTER TREATMENT CAPACITY VARIES BY CARTRIDGE COUNT AND LOCALLY APPROVED SURFACE AREA SPECIFIC FLOW RATE. PEAK CONVEYANCE CAPACITY TO BE DETERMINED BY ENGINEER OF RECORD A 6' x 12' [1829 x 3658] PEAK DIVERSION STYLE STORMFILTER IS SHOWN WITH THE MAXIMUM NUMBER OF CARTRIDGES (14) AND IS AVAILABLE IN A LEFT INLET (AS SHOWN) OR A RIGHT INLET CONFIGURATION
- ALL PARTS AND INTERNAL ASSEMBLY PROVIDED BY CONTECH UNLESS NOTED OTHERWISE

CARTRIDGE SIZE (in. [mm])		27 [686]			18 [457]			LOW DROP	
RECOMMENDED HYDRAULIC DROP (H) (ft. [mm])		3.05 [930]			2.3 [701]			1.8 [549]	
HEIGHT OF WEIR (W) (ft. [mm])		3.00 [914]			2.25 [686]			1.75 [533]	
SPECIFIC FLOW RATE (gpm/sf [L/s/m ²])	2 [1.36]	1.67* [1.13]*	1 [0.68]	2 [1.36]	1.67* [1.13]*	1 [0.68]	2 [1.36]	1.67* [1.13]*	1 [0.68]
CARTRIDGE FLOW RATE (gpm [L/s])	22.5 [1.42]	18.79 [1.19]	11.25 [0.71]	15 [0.95]	12.53 [0.79]	7.5 [0.47]	10 [0.63]	8.35 [0.53]	5 [0.32]

* 1.67 gpm/sf [1.13 L/s/m²] SPECIFIC FLOW RATE IS APPROVED WITH PHOSPHOSORB[®] (PSORB) MEDIA ONLY

STORMFILTER DESIGN NOTES

SITE SPECIFIC				
DATA			13	
STRUCTURE ID				
WATER QUALITY F	LOW RATE (cfs [L/s])		
PEAK FLOW RATE	(cfs [L/s])			
RETURN PERIOD O	F PEAK FLC)W (yrs)		
CARTRIDGE FLOW	RATE			
CARTRIDGE SIZE (2	27, 18, LOW	DROP (LD))		
MEDIA TYPE (PERL	ITE, ZPG, PS	SORB)		
NUMBER OF CARTI	RIDGES REC	QUIRED		
INLET BAY RIM ELE	VATION			
FILTER BAY RIM EL	EVATION			
PIPE DATA:	INVERT	MATERIAL	DIAMETER	
INLET PIPE 1				
INLET PIPE 2				
OUTLET PIPE				
NOTES/SPECIAL REQUIREMENTS:				

6. STRUCTURE SHALL MEET AASHTO HS20 LOAD RATING, ASSUMING EARTH COVER OF 0' - 10' [3048] AND GROUNDWATER ELEVATION AT, OR

B. CONTRACTOR TO PROVIDE EQUIPMENT WITH SUFFICIENT LIFTING AND REACH CAPACITY TO LIFT AND SET THE STORMFILTER STRUCTURE. E. CONTRACTOR TO TAKE APPROPRIATE MEASURES TO PROTECT CARTRIDGES FROM CONSTRUCTION-RELATED EROSION RUNOFF.

SFPD0612 (6' x 12') PEAK DIVERSION STORMFILTER STANDARD DETAIL

VERIFICATION STATEMENT

GLOBE Performance Solutions

Verifies the performance of

The Stormwater Management StormFilter®

Developed by CONTECH Engineered Solutions LLC Scarborough, Maine, USA

Registration: GPS-ETV_2020-06-15_TAPE

In accordance with

ISO 14034:2016

Environmental Management — Environmental Technology Verification (ETV)

John D. Wiebe, PhD Executive Chairman GLOBE Performance Solutions

June 15, 2020 Vancouver, BC, Canada

Verification Body GLOBE Performance Solutions 404 – 999 Canada Place | Vancouver, B.C | Canada |V6C 3E2

Verification Statement – CONTECH Engineered Solutions LLC – The Stormwater Management StormFilter® Registration: GPS-ETV_2020-06-15_TAPE Page I of 12

Verification Overview

This Environmental Technology Verification (ETV) of The Stormwater Management StormFilter[®] (StormFilter) is the second part of a two-part verification process and entails the verification of performance claims (#3 - 9) based on field testing data collected in accordance with The Washington State Department of Ecology emerging stormwater treatment technologies, in accordance with guidelines identified by Ecology (2011) in the Technology Assessment Protocol – Ecology (TAPE). This complements the first part of the verification which verifies performance test data collected in accordance with the New Jersey Department of Environmental Protection (NJDEP) Laboratory Protocol to Assess Total Suspended Solids Removal by a Filtration Manufactured Treatment Device (January, 2013).

Technology description and application

The Stormwater Management StormFilter[®] (StormFilter) is a manufactured treatment device that is provided by Contech Engineered Solutions LLC (Contech). The StormFilter improves the quality of stormwater runoff before it enters receiving waterways through the use of its customizable filter media, which removes non-point source pollutants. As illustrated in **Figure I**, the StormFilter is typically comprised of a vault or manhole structure that houses rechargeable, media-filled filter cartridges. Stormwater entering the system percolates through these media-filled cartridges, which trap particulates and remove pollutants. Once filtered through the media, the treated stormwater is discharged through an outlet pipe to a storm sewer system or receiving water.

Figure I Individual StormFilter Cartridge (Left) and Typical Vault StormFilter Installation (Right)

Depending on the treatment requirements and expected pollutant characteristics at an individual site, the per cartridge filtration flow rate and driving head can be adjusted. The flow rate is individually controlled for each cartridge by a restrictor disc located at the connection point between the cartridge and the underdrain manifold.

Driving head is managed by positioning of the inlet, outlet, and overflow elevations. The StormFilter is typically designed so that the restrictor disc passes the design treatment rate once the water surface reaches the shoulder of the cartridge which is equivalent to the cartridge height. Since the StormFilter uses a restrictor disc to restrict treatment flows below the hydraulic capacity of the media the system

typically operates under consistent driving head for the useful life of the media. Site specific head constraints are also addressed by three different cartridge heights (low drop (effective height of 12 inches), 18, and 27 inches) which operate on the same principal and surface area specific loading rates.

The StormFilter requires a minimum of 1.8 ft, 2.3 ft and 3.05 ft of drop between inlet invert and outlet invert to accommodate the low drop, 18 and 27 inch cartridges, respectively, without backing up flow into the upstream piping during operation. When site conditions limit the amount of drop available across the StormFilter then flow is typically backed up into the upstream piping during operation to ensure sufficient driving head is provided. If desirable the StormFilter can be designed to operate under additional driving head.

The StormFilter is offered in multiple configurations including plastic, steel, and concrete catch basins; and precast concrete manholes, and vaults. Other configurations include panel vaults, CON/SPAN®, box culverts, and curb inlets. The filter cartridges operate consistently and act independently regardless of housing which enables linear scaling.

The StormFilter cartridge can house different types of media including perlite, zeolite, granular activated carbon (GAC), CSF[®] leaf media, MetalRxTM, PhosphoSorb[®] or various media blends such as ZPGTM (perlite, zeolite and GAC). All of the media use processes associated with depth filtration to remove solids. Some media configurations also provide additional treatment mechanisms such as cation exchange, and/or adsorption, chelation, and precipitation. This verification is specific to a field evaluation of the StormFilter with PhosphoSorb[®] media.

Performance conditions

The data and results published in this Verification Statement were obtained from the field testing conducted on The Stormwater Management StormFilter[®] device, in accordance with the requirements outlined by the Technical Guidance Manual for Evaluating Emerging Stormwater Treatment Technologies Technology Assessment Protocol – Ecology (TAPE) as written by the Washington State Department of Ecology, (WADOE, 2011). Prior to starting the performance testing program, a quality assurance project plan (QAPP) was submitted to and approved by the State of Washington Department of Ecology.

Performance claim(s)

Performance Claim 3 (TAPE)

During field testing under the Washington State TAPE Protocol (2011) which was composed of 23 qualifying storm events, The Stormwater Management StormFilter[®], with PhosphoSorb[®] media, demonstrated at least 89% removal of total suspended solids at a range of treated flow rates up to the design hydraulic loading rate of 1.67gpm/sq ft. of media surface for a standard height cartridge of 45.72 cm. This performance claim was verified at a 95% level of confidence.

Performance Claim 4 (TAPE)

During field testing under the Washington State TAPE Protocol (2011) which was composed of 23 qualifying storm events, The Stormwater Management StormFilter[®], with PhosphoSorb[®] media, demonstrated at least 79% removal of total phosphorus at a range of treated flow rates up to the design hydraulic loading rate of 1.67gpm/sq ft. of media surface for a standard height cartridge of 45.72 cm. This performance claim was verified at a 95% level of confidence.

Performance Claim 5 (TAPE)

During field testing under the Washington State TAPE Protocol (2011) which was composed of 23 qualifying storm events, The Stormwater Management StormFilter[®], with PhosphoSorb[®] media, demonstrated at least 56% removal of total nitrogen at a range of treated flow rates up to the design hydraulic loading rate of 1.67gpm/sq ft. of media surface for a standard height cartridge of 45.72 cm. This performance claim was verified at a 95% level of confidence.

Performance Claim 6 (TAPE)

During field testing under the Washington State TAPE Protocol (2011) which was composed of 21 qualifying storm events, The Stormwater Management StormFilter[®], with PhosphoSorb[®] media, demonstrated at least 77% removal of total copper at a range of treated flow rates up to the design hydraulic loading rate of 1.67gpm/sq ft. of media surface for a standard height cartridge of 45.72 cm. This performance claim was verified at a 95% level of confidence.

Performance Claim 7 (TAPE)

During field testing under the Washington State TAPE Protocol (2011) which was composed of 21 qualifying storm events, The Stormwater Management StormFilter[®], with PhosphoSorb[®] media, demonstrated at least 75% removal of total zinc at a range of treated flow rates up to the design hydraulic loading rate of 1.67gpm/sq ft. of media surface for a standard height cartridge of 45.72 cm. This performance claim was verified at a 95% level of confidence.

Performance Claim 8 (TAPE)

During field testing under the Washington State TAPE Protocol (2011) which was composed of 21 qualifying storm events, The Stormwater Management StormFilter[®], with PhosphoSorb[®] media, demonstrated at least 70% removal of total lead at a range of treated flow rates up to the design hydraulic loading rate of 1.67gpm/sq ft. of media surface for a standard height cartridge of 45.72 cm. This performance claim was verified at a 95% level of confidence.

Performance Claim 9 (TAPE)

During field testing under the Washington State TAPE Protocol (2011) which was composed of 21 qualifying storm events, The Stormwater Management StormFilter[®], with PhosphoSorb[®] media, demonstrated at least 80% removal of total aluminium at a range of treated flow rates up to the design hydraulic loading rate of 1.67gpm/sq ft. of media surface for a standard height cartridge of 45.72 cm. This performance claim was verified at a 95% level of confidence.

Performance results

Performance Claim 3 (TAPE):

Raw data summarizing the percent removal of total suspended solids (TSS) by The Stormwater Management StormFilter[®], with PhosphoSorb[®] media, at the design hydraulic loading rate of 1.67gpm/sq ft. of media surface for a standard height cartridge of 45.72 cm for 23 qualifying storm events (bootstrapped data).

Sample ID	Average Influent TSS (mg/L)	Average Effluent TSS (mg/L)	Percent Removal (%)
LPR021012	182	63.0	65.4
LPR021412	539	32.0	94.1
LPR021712	387	48.0	87.6
LPR022012	246	5.0	98.0
LPR022412	512	43.0	91.6
LPR031012	360	27.0	92.5
LPR031212a	150	18.0	88.0
LPR032912b	370	47.0	87.3
LPR052412	510	43.0	91.6
LPR060112	780	16.0	98.0
LPR060412	580	32.0	94.5
LPR060712	570	120.0	79.0
LPR110612	40.0	10.0	75.0
LPR112312	110	5.0	95.5
LPR113012	230	17.0	92.6
LPR051713	94.0	6.0	93.6
LPR052113	389	24.0	93.8
LPR062513	308	21.0	93.2
LPR013014	170	17.0	90.0
LPR030314	280	95.0	66.1
LPR030814a	173	26.0	85.0
LPR011815	529	72.8	86.2
LPR020215	397	67.0	83.1
Sum	2022		
N (COUNT)	23		
Median	91.6		
STDEV.s	8.99		
VAR.s	80.7		
Z (alpha)	1.65		
Z (beta)	1.29		
Hypothesized median	89.0		

Performance Claim 4 (TAPE):

Raw data summarizing the percent removal of total phosphorus (TP) by The Stormwater Management StormFilter[®], with PhosphoSorb[®] media, at the design hydraulic loading rate of 1.67gpm/sq ft. of media surface for a standard height cartridge of 45.72 cm for 23 qualifying storm events (bootstrapped data).

Sample ID	Average Influent TP (mg/L)	Average Effluent TP (mg/L)	Percent Removal (%)
LPR021012	0.141	0.104	26.2
LPR021412	0.220	0.062	71.8
LPR021712	0.310	0.067	78.3
LPR022012	0.163	0.026	84.I
LPR022412	0.424	0.070	83.5
LPR031012	0.140	0.049	65.0
LPR031212a	0.150	0.037	75.3
LPR032912b	0.280	0.081	71.1
LPR052412	0.170	0.070	58.8
LPR060112	0.200	0.035	82.5
LPR060412	0.210	0.043	79.5
LPR060712	0.170	0.140	17.6
LPR110612	0.068	0.025	63.2
LPR112312	0.082	0.025	69.5
LPR113012	0.170	0.025	85.3
LPR051713	0.282	0.029	89.9
LPR052113	0.558	0.050	91.1
LPR062513	0.583	0.045	92.2
LPR013014	0.317	0.053	83.3
LPR030314	0.417	0.133	68.I
LPR030814a	0.261	0.05 l	80.3
LPR011815	0.649	0.124	80.9
LPR020215	0.693	0.100	85.6
Sum	1683		
N (COUNT)	23		
Median	79.5		
STDEV.s	18.5		
VAR.s	343.7		
Z (alpha)	1.65		
Z (beta)	1.29		
Hypothesized median	79.0		

Performance Claim 5 (TAPE):

Raw data summarizing the percent removal of total nitrogen (TN) by The Stormwater Management StormFilter[®], with PhosphoSorb[®] media, at the design hydraulic loading rate of 1.67gpm/sq ft. of media surface for a standard height cartridge of 45.72 cm for 23 qualifying storm events (bootstrapped data).

Sample ID	Average Influent TN (mg/L)	Average Effluent TN (mg/L)	Percent Removal (%)
LPR021012	I.06	0.265	75.I
LPR021412	1.20	0.531	55.9
LPR021712	1.58	0.638	59.5
LPR022012	0.696	0.265	61.9
LPR022412	1.11	0.265	76.0
LPR031012	1.72	0.265	84.5
LPR031212a	0.760	0.400	47.4
LPR032912b	1.23	0.265	78.5
LPR052412	l.85	0.400	78.4
LPR060112	2.40	0.872	63.7
LPR060412	1.06	0.327	69. I
LPR060712	0.579	0.555	4. I
LPR110612	0.569	0.555	2.5
LPR112312	0.515	0.515	0.0
LPR113012	1.22	0.515	57.6
LPR051713	1.37	0.250	81.8
LPR052113	0.531	0.248	53.4
LPR062513	0.619	0.253	59.2
LPR013014	0.240	0.212	11.8
LPR030314	0.530	0.230	56.6
LPR030814a	0.432	0.080	81.5
LPR011815	0.180	0.110	38.9
LPR020215	2.32	0.370	84. I
Sum	281		
N (COUNT)	23		
Median	59.5		
STDEV.s	27.0		
VAR.s	727		
Z (alpha)	1.65		
Z (beta)	1.29		
Hypothesized median	56.0		

Performance Claim 6 (TAPE):

Raw data summarizing the percent removal of total copper (Cu) by The Stormwater Management StormFilter[®], with PhosphoSorb[®] media, at the design hydraulic loading rate of 1.67gpm/sq ft. of media surface for a standard height cartridge of 45.72 cm for 23 qualifying storm events (bootstrapped data).

Sample ID	Average Influent Cu (mg/L)	Average Effluent Cu (mg/L)	Percent Removal (%)
LPR021012	No data	No data	-
LPR021412	No data	No data	-
LPR021712	0.032	0.006	81.3
LPR022012	0.014	0.001	92.9
LPR022412	0.032	0.005	84.4
LPR031012	0.019	0.003	84.2
LPR031212a	0.012	0.003	75.0
LPR032912b	0.023	0.004	82.6
LPR052412	0.050	0.050	0.0
LPR060112	0.040	0.003	92.5
LPR060412	0.021	0.003	85.7
LPR060712	0.028	0.010	64.3
LPR110612	0.006	0.003	50.0
LPR112312	0.006	0.001	83.3
LPR113012	0.016	0.002	87.5
LPR051713	0.016	0.003	81.3
LPR052113	0.027	0.006	77.8
LPR062513	0.029	0.005	82.8
LPR013014	0.021	0.004	81.0
LPR030314	0.019	0.006	68.4
LPR030814a	0.018	0.002	88.9
LPR011815	0.055	0.010	81.8
LPR020215	0.044	0.007	84. I
Sum	1610		
N (COUNT)	21		
Median	82.6		
STDEV.s	20.06		
VAR.s	403		
Z (alpha)	1.65		
Z (beta)	1.29		
Hypothesized median	77.0		

Performance Claim 7 (TAPE):

Raw data summarizing the percent removal of total zinc (Zn) by The Stormwater Management StormFilter[®], with PhosphoSorb[®] media, at the design hydraulic loading rate of 1.67gpm/sq ft. of media surface for a standard height cartridge of 45.72 cm for 23 qualifying storm events (bootstrapped data).

Sample ID	Average Influent Zn (mg/L)	Average Effluent Zn (mg/L)	Percent Removal (%)
LPR021012	No data	No data	-
LPR021412	No data	No data	-
LPR021712	0.151	0.034	77.8
LPR022012	0.076	0.011	85.8
LPR022412	0.191	0.03 I	84.0
LPR031012	0.120	0.022	81.7
LPR031212a	0.068	0.017	75.0
LPR032912b	0.160	0.029	81.9
LPR052412	0.250	0.250	0.0
LPR060112	0.230	0.012	94.8
LPR060412	0.130	0.015	88.5
LPR060712	0.170	0.048	71.8
LPR110612	0.022	0.014	36.4
LPR112312	0.049	0.010	79.6
LPR113012	0.110	0.016	85.5
LPR051713	0.068	0.010	85.2
LPR052113	0.126	0.021	83.5
LPR062513	0.120	0.017	85.5
LPR013014	0.108	0.026	76.I
LPR030314	0.095	0.029	69.8
LPR030814a	0.088	0.013	84.8
LPR011815	0.151	0.039	74.4
LPR020215	0.192	0.038	80.2
Sum	1582		
N (COUNT)	21		
Median	81.7		
STDEV.s	20.69		
VAR.s	428		
Z (alpha)	1.65		
Z (beta)	1.29		
Hypothesized median	75.0		

Performance Claim 8 (TAPE):

Raw data summarizing the percent removal of total lead (Pb) by The Stormwater Management StormFilter[®], with PhosphoSorb[®] media, at the design hydraulic loading rate of 1.67gpm/sq ft. of media surface for a standard height cartridge of 45.72 cm for 23 qualifying storm events (bootstrapped data).

Sample ID	Average Influent Pb (mg/L)	Average Effluent Pb (mg/L)	Percent Removal (%)
LPR021012	No data	No data	-
LPR021412	No data	No data	-
LPR021712	0.013	0.003	73.7
LPR022012	0.005	0.001	79.6
LPR022412	0.015	0.003	77.3
LPR031012	0.009	0.002	78.5
LPR031212a	0.006	0.002	71.9
LPR032912b	0.012	0.003	75.0
LPR052412	0.025	0.025	0.00
LPR060112	0.016	0.005	68.8
LPR060412	0.013	0.001	90.8
LPR060712	0.013	0.005	62.3
LPR110612	0.001	0.001	0.0
LPR112312	0.002	0.001	50.0
LPR113012	0.005	0.001	80.0
LPR051713	0.004	0.001	74.8
LPR052113	0.009	0.009	0.336
LPR062513	0.009	0.002	82.5
LPR013014	0.006	0.001	80.5
LPR030314	0.007	0.003	62.I
LPR030814a	0.005	0.001	71.5
LPR011815	0.015	0.003	81.4
LPR020215	0.011	0.002	81.0
Sum	342		
N (COUNT)	21		
Median	74.8		
STDEV.s	28.05		
VAR.s	787		
Z (alpha)	1.65		
Z (beta)	1.29		
Hypothesized median	70.0		

Performance Claim 9 (TAPE):

Raw data summarizing the percent removal of total aluminium (AI) by The Stormwater Management StormFilter[®], with PhosphoSorb[®] media, at the design hydraulic loading rate of 1.67gpm/sq ft. of media surface for a standard height cartridge of 45.72 cm for 23 qualifying storm events (bootstrapped data).

Sample ID	Average Influent Pb (mg/L)	Average Effluent Pb (mg/L)	Percent Removal (%)	
LPR021012	No data	No data	-	
LPR021412	No data	No data	-	
LPR021712	9.15	1.86	79.7	
LPR022012	2.62	0.319	87.8	
LPR022412	9.65	1.99	79.4	
LPR031012	6.20	1.10	82.3	
LPR031212a	4.30	0.810	81.2	
LPR032912b	6.40	I.70	73.4	
LPR052412	9.70	1.30	86.6	
LPR060112	11.0	0.370	96.6	
LPR060412	12.0	1.00	91.7	
LPR060712	9.60	4.10	57.3	
LPR110612	1.30	0.300	76.9	
LPR112312	1.20	0.190	84.2	
LPR113012	3.00	0.440	85.3	
LPR051713	1.44	0.134	90.7	
LPR052113	3.24	0.358	89.0	
LPR062513	3.94	0.466	88.2	
LPR013014	3.45	0.796	76.9	
LPR030314	2.64	1.13	57.2	
LPR030814a	1.67	0.342	79.5	
LPR011815	5.32	1.17	78.0	
LPR020215	3.85	1.20	68.8	
Sum	691			
N (COUNT)	21			
Mean (AVE)	80.5			
STDEV.s	10.13			
VAR.s	103			
Z (alpha)	1.65			
Z (beta)	1.29			
Hypothesized mean	80.0			

Verification

This verification was completed by the Verification Expert, the Centre for Advancement of Water and Wastewater Technologies ("CAWT"), contracted by GLOBE Performance Solutions, applying the International Standard ISO 14034:2016 Environmental management -- Environmental technology verification (ETV). Data and information provided by Contech Engineered Solutions LLC to support the performance claim included the following:

 Performance test report "The Stormwater Management StormFilter[®] - PhosphoSorb[®] at a Specific Flow Rate of 1.67 gpm/ft² – Performance Evaluation Report" prepared by Contech Engineered Solutions, November 8, 2017. This report is based on a field testing program conducted by Contech personnel at a roadway site in Zigzag, Oregon between January 2012 and February 2015. Testing was conducted in accordance with the 2011 version of the Washington Department of Ecology TAPE (TAPE, 2011).

What is ISO14034:2016 Environmental management – Environmental technology verification (ETV)?

ISO 14034:2016 specifies principles, procedures and requirements for environmental technology verification (ETV) and was developed and published by the International Organization for Standardization (ISO). The objective of ETV is to provide credible, reliable and independent verification of the performance of environmental technologies. An environmental technology is a technology that either results in an environmental added value or measures parameters that indicate an environmental impact. Such technologies have an increasingly important role in addressing environmental challenges and achieving sustainable development.

For more information on the The Stormwater Management StormFilter[®] please contact:

CONTECH Engineered Solutions LLC 71 US Route I, Suite F Scarborough, ME 04074 USA Tel: 207-885-9830 info@conteches.com www.conteches.com For more information on ISO 14034:2016 / ETV please contact:

GLOBE Performance Solutions 404 – 999 Canada Place Vancouver, BC V6C 3E2 Canada Tel: 604-695-5018 / Toll Free: 1-855-695-5018 etv@globeperformance.com www.globeperformance.com

Limitation of verification - Registration: GPS-ETV_2020-06-15_TAPE

GLOBE Performance Solutions and the Verification Expert provide the verification services solely on the basis of the information supplied by the applicant or vendor and assume no liability thereafter. The responsibility for the information supplied remains solely with the applicant or vendor and the liability for the purchase, installation, and operation (whether consequential or otherwise) is not transferred to any other party as a result of the verification.

StormFilter Inspection and Maintenance Procedures

Maintenance Guidelines

The primary purpose of the Stormwater Management StormFilter[®] is to filter and prevent pollutants from entering our waterways. Like any effective filtration system, periodically these pollutants must be removed to restore the StormFilter to its full efficiency and effectiveness.

Maintenance requirements and frequency are dependent on the pollutant load characteristics of each site. Maintenance activities may be required in the event of a chemical spill or due to excessive sediment loading from site erosion or extreme storms. It is a good practice to inspect the system after major storm events.

Maintenance Procedures

Although there are many effective maintenance options, we believe the following procedure to be efficient, using common equipment and existing maintenance protocols. The following two-step procedure is recommended::

1. Inspection

• Inspection of the vault interior to determine the need for maintenance.

2. Maintenance

- Cartridge replacement
- Sediment removal

Inspection and Maintenance Timing

At least one scheduled inspection should take place per year with maintenance following as warranted.

First, an inspection should be done before the winter season. During the inspection the need for maintenance should be determined and, if disposal during maintenance will be required, samples of the accumulated sediments and media should be obtained.

Second, if warranted, a maintenance (replacement of the filter cartridges and removal of accumulated sediments) should be performed during periods of dry weather.

In addition to these two activities, it is important to check the condition of the StormFilter unit after major storms for potential damage caused by high flows and for high sediment accumulation that may be caused by localized erosion in the drainage area. It may be necessary to adjust the inspection/ maintenance schedule depending on the actual operating conditions encountered by the system. In general, inspection activities can be conducted at any time, and maintenance should occur, if warranted, during dryer months in late summer to early fall.

Maintenance Frequency

The primary factor for determining frequency of maintenance for the StormFilter is sediment loading.

A properly functioning system will remove solids from water by trapping particulates in the porous structure of the filter media inside the cartridges. The flow through the system will naturally decrease as more and more particulates are trapped. Eventually the flow through the cartridges will be low enough to require replacement. It may be possible to extend the usable span of the cartridges by removing sediment from upstream trapping devices on a routine as-needed basis, in order to prevent material from being re-suspended and discharged to the StormFilter treatment system.

The average maintenance lifecycle is approximately 1-5 years. Site conditions greatly influence maintenance requirements. StormFilter units located in areas with erosion or active construction may need to be inspected and maintained more often than those with fully stabilized surface conditions.

Regulatory requirements or a chemical spill can shift maintenance timing as well. The maintenance frequency may be adjusted as additional monitoring information becomes available during the inspection program. Areas that develop known problems should be inspected more frequently than areas that demonstrate no problems, particularly after major storms. Ultimately, inspection and maintenance activities should be scheduled based on the historic records and characteristics of an individual StormFilter system or site. It is recommended that the site owner develop a database to properly manage StormFilter inspection and maintenance programs..

Inspection Procedures

The primary goal of an inspection is to assess the condition of the cartridges relative to the level of visual sediment loading as it relates to decreased treatment capacity. It may be desirable to conduct this inspection during a storm to observe the relative flow through the filter cartridges. If the submerged cartridges are severely plugged, then typically large amounts of sediments will be present and very little flow will be discharged from the drainage pipes. If this is the case, then maintenance is warranted and the cartridges need to be replaced.

Warning: In the case of a spill, the worker should abort inspection activities until the proper guidance is obtained. Notify the local hazard control agency and Contech Engineered Solutions immediately.

To conduct an inspection:

Important: Inspection should be performed by a person who is familiar with the operation and configuration of the StormFilter treatment unit and the unit's role, relative to detention or retention facilities onsite.

- 1. If applicable, set up safety equipment to protect and notify surrounding vehicle and pedestrian traffic.
- 2. Visually inspect the external condition of the unit and take notes concerning defects/problems.
- 3. Open the access portals to the vault and allow the system vent.
- 4. Without entering the vault, visually inspect the inside of the unit, and note accumulations of liquids and solids.
- Be sure to record the level of sediment build-up on the floor of the vault, in the forebay, and on top of the cartridges. If flow is occurring, note the flow of water per drainage pipe. Record all observations. Digital pictures are valuable for historical documentation.
- 6. Close and fasten the access portals.
- 7. Remove safety equipment.
- 8. If appropriate, make notes about the local drainage area relative to ongoing construction, erosion problems, or high loading of other materials to the system.
- 9. Discuss conditions that suggest maintenance and make decision as to whether or not maintenance is needed.

Maintenance Decision Tree

The need for maintenance is typically based on results of the inspection. The following Maintenance Decision Tree should be used as a general guide. (Other factors, such as Regulatory Requirements, may need to be considered).

Please note Stormwater Management StormFilter devices installed downstream of, or integrated within, a stormwater storage facility typically have different operational parameters (i.e. draindown time). In these cases, the inspector must understand the relationship between the retention/detention facility and the treatment system by evaluating site specific civil engineering plans, or contacting the engineer of record, and make adjustments to the below guidance as necessary. Sediment deposition depths and patterns within the StormFilter are likely to be quite different compared to systems without upstream storage and therefore shouldn't be used exclusively to evaluate a need for maintenance.

- 1. Sediment loading on the vault floor.
 - a. If >4" of accumulated sediment, maintenance is required.
- 2. Sediment loading on top of the cartridge.
 - a. If >1/4" of accumulation, maintenance is required.
- 3. Submerged cartridges.
 - a. If >4" of static water above cartridge bottom for more than 24 hours after end of rain event, maintenance is required. (Catch basins have standing water in the cartridge bay.)
- 4. Plugged media.
 - a. While not required in all cases, inspection of the media within the cartridge may provide valuable additional information.
 - b. If pore space between media granules is absent, maintenance is required.
- 5. Bypass condition.
 - a. If inspection is conducted during an average rain fall event and StormFilter remains in bypass condition (water over the internal outlet baffle wall or submerged cartridges), maintenance is required.
- 6. Hazardous material release.
 - a. If hazardous material release (automotive fluids or other) is reported, maintenance is required.
- 7. Pronounced scum line.
 - a. If pronounced scum line (say $\ge 1/4''$ thick) is present above top cap, maintenance is required.

Maintenance

Depending on the configuration of the particular system, maintenance personnel will be required to enter the vault to perform the maintenance.

Important: If vault entry is required, OSHA rules for confined space entry must be followed.

Filter cartridge replacement should occur during dry weather. It may be necessary to plug the filter inlet pipe if base flows is occurring.

Replacement cartridges can be delivered to the site or customers facility. Information concerning how to obtain the replacement cartridges is available from Contech Engineered Solutions.

Warning: In the case of a spill, the maintenance personnel should abort maintenance activities until the proper guidance is obtained. Notify the local hazard control agency and Contech Engineered Solutions immediately.

To conduct cartridge replacement and sediment removal maintenance:

- 1. If applicable, set up safety equipment to protect maintenance personnel and pedestrians from site hazards.
- 2. Visually inspect the external condition of the unit and take notes concerning defects/problems.
- 3. Open the doors (access portals) to the vault and allow the system to vent.
- 4. Without entering the vault, give the inside of the unit, including components, a general condition inspection.
- 5. Make notes about the external and internal condition of the vault. Give particular attention to recording the level of sediment build-up on the floor of the vault, in the forebay, and on top of the internal components.
- 6. Using appropriate equipment offload the replacement cartridges (up to 150 lbs. each) and set aside.
- 7. Remove used cartridges from the vault using one of the following methods:

Method 1:

A. This activity will require that maintenance personnel enter the vault to remove the cartridges from the under drain manifold and place them under the vault opening for lifting (removal). Disconnect each filter cartridge from the underdrain connector by rotating counterclockwise 1/4 of a turn. Roll the loose cartridge, on edge, to a convenient spot beneath the vault access.

Using appropriate hoisting equipment, attach a cable from the boom, crane, or tripod to the loose cartridge. Contact Contech Engineered Solutions for suggested attachment devices.

B. Remove the used cartridges (up to 250 lbs. each) from the vault.

Important: Care must be used to avoid damaging the cartridges during removal and installation. The cost of repairing components damaged during maintenance will be the responsibility of the owner.

- C. Set the used cartridge aside or load onto the hauling truck.
- D. Continue steps a through c until all cartridges have been removed.

Method 2:

- A. This activity will require that maintenance personnel enter the vault to remove the cartridges from the under drain manifold and place them under the vault opening for lifting (removal). Disconnect each filter cartridge from the underdrain connector by rotating counterclockwise 1/4 of a turn. Roll the loose cartridge, on edge, to a convenient spot beneath the vault access.
- B. Unscrew the cartridge cap.
- C. Remove the cartridge hood and float.
- D. At location under structure access, tip the cartridge on its side.
- E. Empty the cartridge onto the vault floor. Reassemble the empty cartridge.
- F. Set the empty, used cartridge aside or load onto the hauling truck.
- G. Continue steps a through e until all cartridges have been removed.

- 8. Remove accumulated sediment from the floor of the vault and from the forebay. This can most effectively be accomplished by use of a vacuum truck.
- 9. Once the sediments are removed, assess the condition of the vault and the condition of the connectors.
- 10. Using the vacuum truck boom, crane, or tripod, lower and install the new cartridges. Once again, take care not to damage connections.
- 11. Close and fasten the door.
- 12. Remove safety equipment.
- Finally, dispose of the accumulated materials in accordance with applicable regulations. Make arrangements to return the used <u>empty</u> cartridges to Contech Engineered Solutions.

Related Maintenance Activities -

Performed on an as-needed basis

StormFilter units are often just one of many structures in a more comprehensive stormwater drainage and treatment system.

In order for maintenance of the StormFilter to be successful, it is imperative that all other components be properly maintained. The maintenance/repair of upstream facilities should be carried out prior to StormFilter maintenance activities.

In addition to considering upstream facilities, it is also important to correct any problems identified in the drainage area. Drainage area concerns may include: erosion problems, heavy oil loading, and discharges of inappropriate materials.

Material Disposal

The accumulated sediment found in stormwater treatment and conveyance systems must be handled and disposed of in accordance with regulatory protocols. It is possible for sediments to contain measurable concentrations of heavy metals and organic chemicals (such as pesticides and petroleum products). Areas with the greatest potential for high pollutant loading include industrial areas and heavily traveled roads.

Sediments and water must be disposed of in accordance with all applicable waste disposal regulations. When scheduling maintenance, consideration must be made for the disposal of solid and liquid wastes. This typically requires coordination with a local landfill for solid waste disposal. For liquid waste disposal a number of options are available including a municipal vacuum truck decant facility, local waste water treatment plant or on-site treatment and discharge.

Inspection Report

Date:Personnel:
Location:System Size: Months in Service:
System Type: Vault Cast-In-Place Linear Catch Basin Manhole Other:
Sediment Thickness in Forebay: Date:
Sediment Depth on Vault Floor:
Sediment Depth on Cartridge Top(s):
Structural Damage:
Estimated Flow from Drainage Pipes (if available):
Cartridges Submerged: Yes No Depth of Standing Water:
StormFilter Maintenance Activities (check off if done and give description)
Trash and Debris Removal:
Minor Structural Repairs:
Drainage Area Report
Excessive Oil Loading: Yes No Source:
Sediment Accumulation on Pavement: Yes 🔄 No 🔄 Source:
Erosion of Landscaped Areas: Yes No Source:
Items Needing Further Work:
Owners should contact the local public works department and inquire about how the department disposes of their street waste residuals.
Other Comments:

Review the condition reports from the previous inspection visits.

StormFilter Maintenance Report

Date:		Personnel:			
Location:		System Size:			
System Type:	Vault	Cast-In-Place	Linear Catch Basin	Manhole	Other:
List Safety Proce	edures and Equip	ment Used:			

System Observations

Months in Service:							
Oil in Forebay (if present):	Yes	No					
Sediment Depth in Forebay (if present):							
Sediment Depth on Vault Floor:							
Sediment Depth on Cartridge Top(s): —							
Structural Damage:							
Drainage Area Report							
Excessive Oil Loading:	Yes	No		Source:			
Sediment Accumulation on Pavement:	Yes	No		Source:			
Erosion of Landscaped Areas:	Yes	No		Source:			
StormFilter Cartridge Replacement Maintenance Activities							
Remove Trash and Debris:	Yes	No		Details:			
Replace Cartridges:	Yes	No		Details:			
Sediment Removed:	Yes	No		Details:			
Quantity of Sediment Removed (estimate?):							
Minor Structural Repairs:	Yes	No		Details:			
Residuals (debris, sediment) Disposal Methods:							
Notes:							

© 2020 CONTECH ENGINEERED SOLUTIONS LLC, A QUIKRETE COMPANY 800-338-1122 www.ContechES.com All Rights Reserved. Printed in the USA.

Contech Engineered Solutions LLC provides site solutions for the civil engineering industry. Contech's portfolio includes bridges, drainage, sanitary sewer, stormwater and earth stabilization products. For information on other Contech division offerings, visit www.ContechES.com or call 800.338.1122.

Support

- Drawings and specifications are available at www.conteches.com.
- Site-specific design support is available from our engineers.

NOTHING IN THIS CATALOG SHOULD BE CONSTRUED AS A WARRANTY. APPLICATIONS SUGGESTED HEREIN ARE DESCRIBED ONLY TO HELP READERS MAKE THEIR OWN EVALUATIONS AND DECISIONS, AND ARE NEITHER GUARANTEES NOR WARRANTIES OF SUITABILITY FOR ANY APPLICATION. CONTECH MAKES NO WARRANTY WHATSOEVER, EXPRESS OR IMPLIED, RELATED TO THE APPLICATIONS, MATERIALS, COATINGS, OR PRODUCTS DISCUSSED HEREIN. ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND ALL IMPLIED WARRANTES OF FITNESS FOR ANY PARTICULAR PURPOSE ARE DISCLAIMED BY CONTECH. SEE CONTECH'S CONDITIONS OF SALE (AVAILABLE AT WWW.CONTECHES.COM/COS) FOR MORE INFORMATION.